Systematic Parasitology

, Volume 48, Issue 2, pp 81–115 | Cite as

Phylogeny of the Acanthocephala based on morphological characters

  • Scott Monks


Only four previous studies of relationships among acanthocephalans have included cladistic analyses, and knowledge of the phylogeny of the group has not kept pace with that of other taxa. The purpose of this study is to provide a more comprehensive analysis of the phylogenetic relationships among members of the phylum Acanthocephala using morphological characters. The most appropriate outgroups are those that share a common early cell-cleavage pattern (polar placement of centrioles), such as the Rotifera, rather than the Priapulida (meridional placement of centrioles) to provide character polarity based on common ancestry rather than a general similarity likely due to convergence of body shapes. The phylogeny of 22 species of the Acanthocephala was evaluated based on 138 binary and multistate characters derived from comparative morphological and ontogenetic studies. Three assumptions of cement gland structure were tested: (i) the plesiomorphic type of cement glands in the Rotifera, as the sister group, is undetermined; (ii) non-syncytial cement glands are plesiomorphic; and (iii) syncytial cement glands are plesiomorphic. The results were used to test an early move of Tegorhynchus pectinarius to Koronacantha and to evaluate the relationship between Tegorhynchus and Illiosentis. Analysis of the data-set for each of these assumptions of cement gland structure produced the same single most parsimonious tree topology. Using Assumptions i and ii for the cement glands, the trees were the same length (length = 404 steps, CI = 0.545, CIX = 0.517, HI = 0.455, HIX = 0.483, RI = 0.670, RC = 0.365). Using Assumption iii, the tree was three steps longer (length = 408 steps, CI = 0.539, CIX = 0.512, HI = 0.461, HIX = 0.488, RI = 0.665, RC = 0.359). The tree indicates that the Palaeacanthocephala and Eoacanthocephala both are monophyletic and are sister taxa. The members of the Archiacanthocephala are basal to the other two clades, but do not themselves form a clade. The results provide strong support for the Palaeacanthocephala and the Eoacanthocephala and the hypothesis that the Eoacanthocephala is the most primitive group is not supported. Little support for the Archiacanthocephala as a monophyletic group was provided by the analysis. Support is provided for the recognition of Tegorhynchus and Illiosentis as distinct taxa, as well as the transfer of T. pectinarius to Koronacantha.


Morphological Character Body Shape Tree Topology Sister Group Monophyletic Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, D.C. & Rosenberg, M.S. (1998) Partial warps, phylogeny and ontogeny: a comment on Fink and Zelditch (1995). Systematic Biology, 47, 168-173.Google Scholar
  2. Ahlrichs, W.H. (1997) Epidermal ultrastructure of Seison nebaliae and Seison annulatus, and a comparison of epidermal structures within the Gnathifera. Zoomorphology, 117, 41-48.Google Scholar
  3. Aho, J.M., Mulvey, M., Jacobson, K.C. & Esch, G.W. (1992) Genetic differentiation among congeneric acanthocephalans in the yellow-bellied slider turtle. Journal of Parasitology, 78, 974-981.Google Scholar
  4. Amin, O.M. (1982) Acanthocephala In: Parker, S.P. (Ed.) Synopsis and classification of living organisms. New York: McGraw-Hill Book, pp. 933-940.Google Scholar
  5. Amin, O.M. (1984) Variability and redescription of Acanthocephalus dirus (Acanthocephala: Echinorhynchidae) from freshwater fishes in North America. Proceedings of the Helminthological Society of Washington, 51, 225-237.Google Scholar
  6. Amin, O.M. (1985) Classification In: Crompton, D.W.T. & Nickol, B.B. (Eds) Biology of the Acanthocephala. Cambridge: Cambridge University Press, pp. 27-72.Google Scholar
  7. Amin, O.M. (1986) On the species and populations of the genus Acanthocephalus (Acanthocephala: Echinorhynchidae) from North American freshwater fishes: a cladistic analysis. Proceedings of the Biological Society of Washington, 99, 574-579.Google Scholar
  8. Amin, O.M. (1987) Key to the families and subfamilies of Acanthocephala, with the erection of a new class (Polyacanthocephala) and a new order (Polyacanthoryhnchida). Journal of Parasitology, 73, 1,216-1,219.Google Scholar
  9. Amin, O.M. (1996) Acanthocephala from Arabian gulf fishes off Kuwait, with descriptions of Neoechinorhynchus dimorphospinus sp. n. (Neoechinorhynchidae), Tegorhynchus holospinus sp. n. (Illiosentidae), Micracanthorhynchus kuwaitensis sp. n.(Rhadinorhynchidae), and Slendrorhynchus breviclaviproboscis gen. n., sp. n. (Diplosentidae); and key to species of the genus Micracanthorhynchus. Journal of the Helminthological Society of Washington, 63, 201-210.Google Scholar
  10. Amin, O.M., Heckmann, R.A., Inchaustry, V. & Vasquez, R. (1996) Immature Polyacanthorhynchus rhopalorhynchus (Acanthocephala: Polyacanthorhynchidae) in venton, Hoplias malabaricus (Pisces) fromMoca Vie River, Bolivia, with notes on its apical organ and histopathology. Journal of the Helminthological Society of Washington, 63, 115-119.Google Scholar
  11. Amin, O.M. & Vignieri, J.C. (1986a) Acanthocephala from lake fishes in Wisconsin: numerical and structural-functional relationships of the giant nuclei in Neoechinorhynchus cylindratus (Neoechinorhynchidae). Journal of Parasitology, 72, 88-94.Google Scholar
  12. Amin, O.M. & Vignieri, J.C. (1986b) Acanthocephala from lake fishes in Wisconsin: the giant nuclei pattern in Neoechinorhynchus robertbaueri and N. prolixoides (Neoechinorhynchidae). Proceedings of the Helminthological Society of Washington, 53, 184-193.Google Scholar
  13. Archie, J.W. (1985) Methods for coding variable morphological features for numerical taxonomic analysis. Systematic Zoology, 34, 326-345.Google Scholar
  14. Backeljau, T., Winnepenninckx, B. & Bruyn, L.D. (1993) Cladistic analysis of metazoan relationships: a reappraisal. Cladistics, 9, 167-181.Google Scholar
  15. Bravo-Hollis, M. (1946) Neoechinorhynchus emydis (Leidy, 1852); Van Cleave, 1913, parasito del intestino de Chrysemys ornata. Anales del Instituto de Biología, 17, 187-192.Google Scholar
  16. Bremer, K. (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution, 42, 795-803.Google Scholar
  17. Bremer, K. (1994) Branch support and tree stability. Cladistics, 10, 295-304.Google Scholar
  18. Brooks, D.R. (1996) Explanations of homoplasy at different levels of biological organization. In: Sanderson, M.J. & Hufford, L. (Eds) Homoplasy: the recurrence of similarity in evolution.San Diego: Academic Press, pp. 3-36.Google Scholar
  19. Brooks, D.R. & Bandoni, S.M. (1988) Coevolution and relicts. Systematic Zoology, 37, 19-33.Google Scholar
  20. Brooks, D.R. & McLennan, D.A. (1991) Phylogeny, ecology, and behavior: a research program in comparative biology. Chicago: University of Chicago Press, 434 pp.Google Scholar
  21. Brooks, D.R. & McLennan, D.A. (1993a) Parascript: parasites and the language of evolution. Washington, DC: Smithsonian Institution Press, 429 pp.Google Scholar
  22. Brooks, D.R. & McLennan, D.A. (1993b) Macroevolutionary patterns of morphological diversification among parasitic flatworms (Platyhelminthes: Cercomeria). Evolution, 47, 495-509.Google Scholar
  23. Brooks, D.R. & O'Grady, R.T. (1989) Crocodilians and their helminth parasites: macroevolutionary considerations. American Zoologist, 29, 873-883.Google Scholar
  24. Brusca, R.C. & Brusca, G.J. (1990) Invertebrates. Sunderland: Sinauer Associates Inc., 922 pp.Google Scholar
  25. Bullock, W.L. (1969) Morphological features as tools and pitfalls in acanthocephalan systematics. In: Schmidt, G.D. (Ed.) Problems in systematics of parasites. Baltimore: University Park Press, pp. 9-24.Google Scholar
  26. Cable, R.M. & Linderoth, J. (1963) Taxonomy of some Acanthocephala from marine fishes with reference to species from Curaçao, N. A., and Jamaica, W. I. Journal of Parasitology, 49, 706-716.Google Scholar
  27. Caira, J.N., Jensen, K. & Healy, C.J. (1999) On the phylogenetic relationships among tetraphyllidean, lecanicephalidean and diphyllidean tapeworm genera. Systematic Parasitology, 42, 77-151.Google Scholar
  28. Conway Morris, S. & Crompton, D.W.T. (1982) The origins and evolution of the Acanthocephala. Biological Review, 57, 85-115.Google Scholar
  29. Cracraft, J. (1982a) Geographic differentiation, cladistics, and vicariance biogeography: reconstructing the tempo and mode of evolution. American Zoologist, 22, 411-424.Google Scholar
  30. Cracraft, J. (1982b) A nonequilibrium theory for the rate-control of speciation and extinction and the origin of macroevolutionary patterns. Systematic Zoology, 31, 348-365.Google Scholar
  31. de Beer, G.R. (1975) The evolution of flying and flightless birds. Oxford Biology Reader, 68, 1-16.Google Scholar
  32. de Pinna, M.C.C. (1991) Concepts and test of homology in the cladistic paradigm. Cladistics, 7, 367-394.Google Scholar
  33. Dollfus, R.P. & Golvan, Y.J. (1956) V — Acanthocéphales de Poissons du Niger. Bulletin de l'Institut Fondamental d'Afrique Noire, 18, 1086-1106.Google Scholar
  34. Donoghue, M.J. & Maddison, W.P. (1986) Polarity assessment in phylogenetic systematics: a response to Meacham. Taxon, 35, 534-545.Google Scholar
  35. Eernisse, D.J., Albert, J.S. & Anderson, F.E. (1992) Annelida and Arthropoda are not sister taxa: a phylogenetic analysis of spiralian metazoan morphology. Systematic Biology, 41, 305-330.Google Scholar
  36. Farris, J.S. (1988) Hennig86. Distributed by the author, Port Jefferson Station, New York.Google Scholar
  37. Fink, W.L. & Zelditch, M.L. (1995) Phylogenetic analysis of ontogenetic shape transformations: a reassessment of the piranha genus Pygocentrus (Teleostei). Systematic Biology, 44, 343-360.Google Scholar
  38. García-Varela, M., Pérez-Ponce de León, G., de la Torre, P., Cummings, M.P. & Laclette, J.P. (2000) Phylogenetic relationships of Acanthocephala based on analysis of 18S ribosomal RNA gene sequences. Journal of Molecular Evolution. (In press).Google Scholar
  39. Garey, J.R., Near, T.J., Nonnemacher, M.R. & Nadler, S.A. (1996) Molecular evidence for Acanthocephala as a subtaxon of Rotifera. Journal of Molecular Evolution, 43, 287-292.Google Scholar
  40. Gee, R.J. (1987) A comparative morphological study of the stutzzelle (support cell) in the phylum Acanthocephala. Canadian Journal of Zoology 65, 660-668.Google Scholar
  41. Gibson, D.I. & Bray, R.A. (1994) The evolutionary expansion and host-parasite relationships of the Digenea. International Journal for Parasitology, 24, 1,213-1,226.Google Scholar
  42. Goldman, N. (1989) Fewest variables coding method for multistate characters. Systematic Zoology, 38, 79-85.Google Scholar
  43. Golvan, Y.J. (1956) Acanthocéphales d'Amazonie. Redescription d'Oliganthorhynchus iheringi Travassos, 1916 et description de Neoechinorhynchus buttnerae n. sp. (Neoacanthocephala-Neoechinorhynchidae). Annales de Parasitologie Humaine and Comparée, 31, 500-524.Google Scholar
  44. Golvan, Y.J. (1962) Le phylum des Acanthocephala (Quatrième note). La Classe des Archiacanthocephala (A. Meyer, 1931).Annales de Parasitologie Humaine and Comparée, 37, 1-72.Google Scholar
  45. Golvan, Y J. (1969) Systematique des acanthocéphales (Acanthocephala Rudolphi 1801). L'ordre des Palaeacanthocephala Meyer 1931. La super-famille des Echinorhynchoidea (Cobbold 1876) Golvan et Houin 1963.Mémoires du Muséum Nationale d'Histoire Naturelle, 57, 1-373.Google Scholar
  46. Grabda-Kazubska, B. (1964) Observations on the armature of embryos of acanthocephalans. Acta Parasitologica Polonica, 12, 215-231.Google Scholar
  47. Hawkins, J.A., Hughes, C.E. & Scotland, R.W. (1997) Primary homology assessment, characters and character states. Cladistics, 13, 275-283.Google Scholar
  48. Hennig, W. (1966) Phylogenetic systematics. Urbana: University of Illinois Press, 263 pp.Google Scholar
  49. Hopp, W.B. (1954) Studies on the morphology and life cycle of Neoechinorhynchus emydis (Leidy), an acanthocephalan parasite of the map turtle, Graptemys geographica (Le Sueur). Journal of Parasitology, 40, 3-16.Google Scholar
  50. Huffman, D.G. & Nickol, B.B. (1978) Meristogram analysis of the acanthocephalan genus Pomphorhynchus in North America. Journal of Parasitology, 64, 851-859.Google Scholar
  51. Hyman, L.H. (1951) The Invertebrates: Acanthocephala, Aschelminthes, and Entoprocta. New York: McGraw-Hill, 572 pp.Google Scholar
  52. Källersjö, M., Farris, J.S., Kluge, A.G. & Bult, C. (1992) Skewness and permutation. Cladistics, 8, 275-287.Google Scholar
  53. Kennedy, M.J. (1982) A redescription of Acanthocephalus bufonis, (Shipley, 1903) Southwell and Macfie, 1925 (Acanthocephala: Echinorhynchidae) from the black-spotted toad, Bufo melanostictus, from Bogor, Indonesia. Canadian Journal of Zoology, 60, 356-360.Google Scholar
  54. Kluge, A.G. (1998) Total evidence or taxonomic congruence: cladistics or consensus classification. Cladistics, 14, 151-158.Google Scholar
  55. Kostylev, N.N. (1926) DeZur kenntnis der Acanthocephalen der fische des Schwarzen Meeres. Zoologischer Anzeiger, 67, 177-183.Google Scholar
  56. Larsen, E., Monks, S., Stone, J., Marques, F., Godfrey, M., Pearson, R. & Brooks, D.R. (1997) Shared domains of interest for developmental biologists and phylogeneticists. Journal of Comparative Biology, 2, 137-141.Google Scholar
  57. Little, J.W. & Hopkins, S.H. (1968) Neoechinorhynchus constrictus sp. n., an acanthocephalan from Texas turtles. Proceedings of the Helminthological Society of Washington, 35, 46-49.Google Scholar
  58. Linton, E. (1891) Notes on the Entozoa of marine fishes, with descriptions of new species. Part III. Report of the U.S. Commission on Fisheries for 1888, 523-542.Google Scholar
  59. Linton, E. (1905) Parasites of fishes of Beaufort, North Carolina. Bulletin of the Bureau of Fisheries, 34, 85-126.Google Scholar
  60. Lorenzen, S. (1985) Phylogenetic aspects of pseudocoelomate evolution. In: Conway Morris, S., George, J.D., Gibson, R. & Platt, H.M. (Eds) The origins and relationships of lower invertebrates. Oxford: Clarendon Press, pp. 210-223.Google Scholar
  61. Lorenzen, S. (1993) The role of parsimony, outgroup analysis, and theory of evolution in phylogenetic systematics. Zeitschrift für Zoologische Systematik und Evolutionsforschung, 31, 1-20.Google Scholar
  62. Maddison, D.R. (1994) Phylogenetic methods for inferring the evolutionary history and processes of change in discretely valued characters. Annual Review of Entomology, 39, 267-292.Google Scholar
  63. Maddison, W.P. (1993) Missing data versus missing characters in phylogenetic analysis. Systematic Biology, 42, 576-581.Google Scholar
  64. Maddison, W.P., Donoghue, M.J. & Maddison, D.R. (1984) Outgroup analysis and parsimony. Systematic Zoology, 33, 83-103.Google Scholar
  65. Meglitsch, P.A. & Schram, F.R. (1991) Invertebrate Zoology. Oxford: Oxford University Press, 623 pp.Google Scholar
  66. Meyer, A. (1932) Acanthocephala. In: Bronn, H.G. (Ed.) Klassen und Ordnungen des Tierreichs, Vol. 4. Leipzig: Akademische Verlagsgesellschaft, pp. 1-332.Google Scholar
  67. Meyer, A. (1933) Acanthocephala. In: Bronn, H.G. (Ed.) Klassen und Ordnungen des Tierreichs, Vol. 4. Leipzig: Akademische Verlagsgesellschaft, pp. 333-582.Google Scholar
  68. Miller, D.M. & Dunagan, T.T. (1985) Functional morphology. In: Crompton, D.W.T. & Nickol, B.B. (Eds) Biology of the Acanthocephala. Cambridge: Cambridge University, pp. 73-123.Google Scholar
  69. Monks, S. (1999) Relaciones filogenéticas entre los miembros del phylum Acanthocephala. XV Congreso Nacional de Zoología y VIII Renunión Nacional de Malacología y Conquiliología), 9–12 November, 1999, Tepic, Nayarit, México, p. 32.Google Scholar
  70. Monks, S. & Pérez-Ponce de León, G. (1996) EsKoronacantha mexicana n. gen., n. sp. (Acanthocephala: Illiosentidae) from marine fishes in Chamela Bay, Jalisco, México. Journal of Parasitology, 82, 788-792.Google Scholar
  71. Monks, S., Marques, F., Leon-Règagnon, V. & Pérez-Ponce de León, G. (1997) Koronacantha pectinaria n. comb. (Acanthocephala: Illiosentidae) from Microlepidotus brevipinnis (Haemulidae) and redescription of Tegorhynchus brevis. Journal of Parasitology, 83, 485-494.Google Scholar
  72. Near, T.J., Garey, J.R. & Nadler, S.A. (1998) Phylogenetic relationships of the Acanthocephala inferred from 18S ribosomal DNA sequences. Molecular Phylogenetics and Evolution, 10, 287-298.Google Scholar
  73. Nielsen, C. (1995) Animal evolution: interrelationships of the living phyla. Oxford: Oxford University Press, 467 pp.Google Scholar
  74. Nielsen, C., Scharff, N. & Eibye-Jacobsen, D. (1996) Cladistic analyses of the animal kingdom. Biological Journal of the Linnean Society, 57, 385-410.Google Scholar
  75. Noble, E.R., & Noble, G.A. (1971) Parasitology. The biology of animal parasites. (3rd Edition). Philadelphia: Lea & Febiger, 617 pp.Google Scholar
  76. Oetinger, D.F. & Buckner, R.L. (1993) Morphology of the genital vestibule of Neoechinorhynchus carinatus (Acanthocephala: Neoechinorhynchidae). Journal of Parasitology, 79, 930-934.Google Scholar
  77. Petrochenko, V.I. (1956) [Acanthocephala of domestic and wild animals]. Volume I. Moscow: Izdatel'stvo Akademii Nauk SSSR, Vsesoyuznoe Obshchestvo Gel'mintologov, 465 pp. (In Russian).Google Scholar
  78. Petrochenko, V.I. (1958) [Acanthocephala of domestic and wild animals]. Volume II. Moscow: Izdatel'stvo Akademii Nauk SSSR, Vsesoyuznoe Obshchestvo Gel'mintologov, 435 pp. (In Russian).Google Scholar
  79. Poe, S. (1998) Sensitivity of phylogeny estimation to taxonomic sampling. Systematic Biology, 47, 18-31.Google Scholar
  80. Price, P.W. (1980) Evolutionary biology of parasites. Princeton: Princeton University Press, 237 pp.Google Scholar
  81. Rae, T.C. (1998) The logical basis for the use of continuous characters in phylogenetic systematics. Cladistics, 14, 221-228.Google Scholar
  82. Rohlf, F.J. (1998) On applications of geometric morphometrics to studies of ontogeny and phylogeny. Systematic Biology, 47, 147-158.Google Scholar
  83. Salgado-Maldonado, G. (1976) Acantocéfalos de peces. III. Redescripción de Dollfusentis chandleri Golvan, 1969 (Acanthocephala: Illiosentidae) y descripción de una nueva especie del mismo género. Anales del Instituto de Biología de la Universidad Nacional Autónoma de México, 47, 19-34.Google Scholar
  84. Salgado-Maldonado, G. (1978) Acantocéfalos de peces. IV.Descripción de dos especies nuevas de Neoechinorhynchus Hamann, 1892 (Acanthocephala: Neoechinorhynchidae) y algunas consideraciones sobre este género. Anales del Instituto de Biología de la Universidad Nacional Autónoma de México, 49, 35-48.Google Scholar
  85. Schmidt, G.D. (1969) Introduction. In: Schmidt, G.D. (Ed.) Problems in systematics of parasites. Baltimore: University Park Press, pp. 3-5.Google Scholar
  86. Schmidt, G.D. (1972) Revision of the class Archiacanthocephala Meyer, 1931 (Phylum Acanthocephala), with emphasis on Oligacanthorhynchidae Southwell et MacFie, 1925. Journal of Parasitology, 58, 290-297.Google Scholar
  87. Schmidt, G.D. & Kuntz, R.E. (1977) Revision of Mediorhynchus Van Cleave 1916 (Acanthocephala) with a key to the species. Journal of Parasitology, 63, 500-507.Google Scholar
  88. Schmidt, G.D. & Roberts, L.S. (1985) Foundations in parasitology. St. Louis: Times Mirror/Mosby College Publishing, 775 pp.Google Scholar
  89. Schram, F.R. (1991) Cladistic analysis of metazoan phyla and the placement of fossil problematica In: Simonette, A.M. & Conway Morris, S. (Eds) The early evolution of Metazoa and the significance of problematic taxa. Cambridge: Cambridge University Press, pp. 35-46.Google Scholar
  90. Schram, F.R. & Ellis, W.N. (1994) Metazoan relationships: a rebuttal. Cladistics 10, 331-337.Google Scholar
  91. Scotland, R.W. (1992) Character coding. In: Forey, P.L., Humphries, C.J., Kitching, I.J., Scotland, R.W., Siebert, D J. & Williams, D.M. (Eds) Cladistics: a practical course in systematics. Oxford: Clarendon Press, pp. 14-21.Google Scholar
  92. Simpson, G.G. (1944) Tempo and mode in evolution. New York: Columbia University Press, 345 pp.Google Scholar
  93. Smith, G.G. (1949) The meaning of evolution. New Haven: Yale University Press, 364 pp.Google Scholar
  94. Sober, E.R. (1988) Reconstructing the past: parsimony, evolution, and inference. Cambridge: Massachusetts Institute of Technology Press, 265 pp.Google Scholar
  95. Stevens, P.F. (1991) Character states, morphological variation, and phylogenetic analysis. Systematic Botany, 16, 553-583.Google Scholar
  96. Storch, V. (1979) Contributions of comparative ultrastructural research to problems of invertebrate evolution. American Zoologist, 19, 637-645.Google Scholar
  97. Storch, V. & Welsch, U. (1970) Ñber den aufvau resorbierender epithelien darmloser endoparasiten. Zoologischer Anzeiger, Suppl. 33, 617-621.Google Scholar
  98. Swofford, D.W. (1993) PAUP: Phylogenetic analysis using parsimony, 3.1.1. Champaign: Illinois Natural History Survey.Google Scholar
  99. Swofford, D.L. & Maddison, W.P. (1987) Reconstructing ancestral character states under Wagner parsimony. Mathematical Biosciences, 87, 199-229.Google Scholar
  100. Swofford, D.L. & Olsen, G.J. (1990) Phylogeny reconstruction.In: Hillis, D.M. & Moritz, C. (Eds) Molecular systematics. Sunderland, Massachusetts: Sinauer Associates, pp. 411-501.Google Scholar
  101. Swofford, D.L., Olsen, G.J., Waddell, P.J. & Hillis, D.M. (1996) Phylogenetic inference. In: Hillis, D.M., Moritz, C. & Mable, B.K. (Eds) Molecular systematics. Sunderland, Massachusetts: Sinauer Associates, Inc., pp. 407-514.Google Scholar
  102. Van Cleave, H J. (1918) Acanthocephala of the subfamily Rhadinorhynchinae from American fish. Journal of Parasitology, 5, 17-24.Google Scholar
  103. Van Cleave, H.J. (1923a) A key to the genera of Acanthocephala. Transactions of the American Microscopical Society, 42, 184-191.Google Scholar
  104. Van Cleave, H.J. (1923b) Telosentis, a new genus of Acanthocephala from southern Europe. Journal of Parasitology, 9, 174-175.Google Scholar
  105. Van Cleave, H.J. (1941a) Relationships of the Acanthocephala. American Naturalist, 75, 31-47.Google Scholar
  106. Van Cleave, H.J. (1941b) Hook patterns on the acanthocephalan proboscis. Quarterly Review of Biology, 16, 157-172.Google Scholar
  107. Van Cleave, H.J. (1947) On the occurrence of the acanthocephalan genus Telosentis in North America. Journal of Parasitology, 33, 126-133.Google Scholar
  108. Van Cleave, H.J. (1948) Expanding horizons in the recognition of a phylum. Journal of Parasitology, 34, 1-20.Google Scholar
  109. Van Cleave, H.J. (1949a) Morphological and phylogenetic interpretations of the cement glands in the Acanthocephala. Journal of Morphology, 84, 427-457.Google Scholar
  110. Van Cleave, H.J. (1949b) The acanthocephalan genus Neoechinorhynchus in the catostomid fishes of North America, with descriptions of two new species. Journal of Parasitology, 35, 500-512.Google Scholar
  111. Van Cleave, H.J. (1952) Some host-parasite relationships of the Acanthocephala, with special reference to the organs of attachment. Experimental Parasitology, 1, 305-330.Google Scholar
  112. Van Cleave, H.J. & Lincicome, D.R. (1939) On a new genus and species of Rhadinorhynchidae (Acanthocephala). Parasitology, 31, 413-416.Google Scholar
  113. Van Cleave, H.J. & Lincicome, D.R. (1940) A reconsideration of the acanthocephalan family Rhadinorhynchidae. Journal of Parasitology, 26, 75-81.Google Scholar
  114. Wanson, W.W. & Nickol, B.B. (1975) Presomal morphology and development of Prosthorhynchus formosus, Prosthenorchis elegans, and Moniliformis dubius (Acanthocephala). Journal of Morphology, 145, 73-84.Google Scholar
  115. Watrous, L.E. & Wheeler, Q.D. (1981) The out-group comparison method of character analysis. Systematic Zoology, 30, 1-11.Google Scholar
  116. West, J.G. & Faith, D.P. (1990) Data, methods and assumptions in phylogenetic inference. Australian Systematic Botany, 3, 9-20.Google Scholar
  117. Whitfield, P.J. (1971) Phylogenetic affinities of Acanthocephala: an assessment of ultrastructural evidence. Parasitology, 63, 49-58.Google Scholar
  118. Wiens, J.J. (1998) The accuracy of methods for coding and sampling higher-level taxa for phylogenetic analysis: a simulation study. Systematic Biology, 47, 397-413.Google Scholar
  119. Wiens, J.J. & Reeder, T.W. (1995) Combining data sets with different numbers of taxa for phylogenetic analysis. Systematic Biology, 44, 548-558.Google Scholar
  120. Wiley, E.O. (1981) Phylogenetics: The theory and practice of phylogenetic systematics. New York: Wiley Interscience, 439 pp.Google Scholar
  121. Wiley, E.O., Siegel-Causey, D., Brooks, D.R. & Funk, V.A. (1991) The compleat cladist: a primer of phylogenetic procedures. Lawrence: The University of Kansas Printing Service, 158 pp.Google Scholar
  122. Willmer, P.G. (1990) Invertebrate relationships: patterns in animal evolution. Cambridge: Cambridge University Press, 400 pp.Google Scholar
  123. Winnepenninckx, B., Backeljau, T., Mackey, L.Y., Brooks, J.M., Wachter, R.D., Kumar, S. & Garey, J.R. (1995) 18S rRNA data indicate that Aschelminthes are polyphyletic in origin and consist of at least three distinct clades. Molecular Biology and Evolution, 12, 1,132-1,137.Google Scholar
  124. Yamaguti, S. (1963) Systema helminthum. Volume V: Acanthocephala. New York: Interscience Publishers, 423 pp.Google Scholar
  125. Yeates, D.K. (1995) Groundplans and exemplars: paths to the tree of life. Cladistics, 11, 343-357.Google Scholar
  126. Zelditch, M.L. & Fink, W.L. (1995) Partial warps, phylogeny and ontogeny. Systematic Biology, 47, 345-348.Google Scholar
  127. Zelditch, M.L., Fink, W.L. & Swiderski, D.L. (1995) Morphometrics, homology, and phylogenetics: quantified characters as synapomorphies. Systematic Biology, 44, 179-189.Google Scholar
  128. Zelditch, M.L., Fink, W.L., Swiderski, D.L. & Lundrigan, B.L. (1998) On applications of geometric morphometrics to studies of ontology and phylogeny: a reply to Rohlf. Systematic Biology, 47, 159-167.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Scott Monks
    • 1
  1. 1.Department of ZoologyUniversity of TorontoCanada

Personalised recommendations