Advertisement

Plant Molecular Biology

, Volume 41, Issue 5, pp 679–685 | Cite as

Bryophyte 5S rDNA was inserted into 45S rDNA repeat units after the divergence from higher land plants

  • Takefumi Sone
  • Masaki Fujisawa
  • Mizuki Takenaka
  • Saiko Nakagawa
  • Shohei Yamaoka
  • Megumi Sakaida
  • Rie Nishiyama
  • Katsuyuki T. Yamato
  • Nobuko Ohmido
  • Kiichi Fukui
  • Hideya Fukuzawa
  • Kanji Ohyama
Article

Abstract

The 5S ribosomal RNA genes (5S rDNA) are located independently from the 45S rDNA repeats containing 18S, 5.8S and 26S ribosomal RNA genes in higher eukaryotes. Southern blot and fluorescence in situ hybridization analyses demonstrated that the 5S rDNAs are encoded in the 45S rDNA repeat unit of a liverwort, Marchantia polymorpha, in contrast to higher plants. Sequencing analyses revealed that a single-repeat unit of the M. polymorpha nuclear rDNA, which is 16 103 bp in length, contained a 5S rDNA downstream of 18S, 5.8S and 26S rDNA. To our knowledge, this is the first report on co-localization of the 5S and 45S rDNAs in the rDNA repeat of land plants. Furthermore, we detected a 5S rDNA in the rDNA repeat of a moss, Funaria hygrometrica, by a homology search in a database. These findings suggest that there has been structural re-organization of the rDNAs after divergence of the bryophytes from the other plant species in the course of evolution.

18S 5.8S and 26S ribosomal RNA genes (45S rDNA) 5S rDNA bryophyte fluorescence in situ hybridization (FISH) liverwort Marchantia polymorpha 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akashi, K., Sakurai, K., Hirayama, J., Fukuzawa, H. and Ohyama, K. 1996. Occurrence of nuclear-encoded tRNA Ile in mitochondria of the liverwort, Marchantia polymorpha. Curr. Genet. 30: 181-185.PubMedGoogle Scholar
  2. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410.CrossRefPubMedGoogle Scholar
  3. Batts-Young, B. and Lodish, H.F. 1978. Triphosphate residues at the 5 0 ends of rRNA precursor and 5S RNA from Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA 75: 740-744.PubMedGoogle Scholar
  4. Beech, R.N. and Strobeck, C. 1993. Structure of the intergenic spacer region from the ribosomal RNA gene family of white spruce (Picea glauca). Plant Mol. Biol. 22: 887-892.PubMedGoogle Scholar
  5. Belkhiri, A., Buchko, J. and Klassen, G.R. 1992. The 5S ribosomal RNA gene in Pythium species: two different genomic locations. Mol. Biol. Evol. 9: 1089-1102.PubMedGoogle Scholar
  6. Bell, G.I., DeGennaro, L.J., Gelfand, D.H., Bishop, R.J., Valenzuela, P. and Rutter, W.J. 1977. Ribosomal RNA genes of Saccharomyces cerevisiae. I. Physical map of the repeating unit and location of the regions coding for 5 S, 5.8 S, 18 S, and 25 S ribosomal RNAs. J. Biol. Chem. 252: 8118-8125.PubMedGoogle Scholar
  7. Capesius, I. 1997. Analysis of the ribosomal RNA gene repeat from the moss Funaria hygrometrica. Plant Mol. Biol. 33: 559-564.PubMedGoogle Scholar
  8. Church, G.M. and Gilbert, W. 1984. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81: 1991-1995.PubMedGoogle Scholar
  9. Doelling, J.H., Gaudino, R.J. and Pikaard, C.S. 1993. Functional analysis of Arabidopsis thaliana rDNA gene and spacer promoters in vivo and by transient expression. Proc. Natl. Acad. Sci. USA 90: 7528-7532.PubMedGoogle Scholar
  10. Drouin, G. and Moniz de Sa, M. 1995. The concerted evolution of 5S ribosomal genes linked to the repeat units of other multigene families. Mol. Biol. Evol. 12: 481-493.PubMedGoogle Scholar
  11. Fukui, K., Kamisugi, Y. and Sakai, F. 1994. Physical mapping of 5S rDNA loci by direct-cloned biotinylated probes in barley. Genome 37: 105-111.PubMedGoogle Scholar
  12. Gerlach, W.L. and Bedbrook, J.R. 1979. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucl. Acids Res. 7: 1869-1885.PubMedGoogle Scholar
  13. Gilson, P.R., Adcock, G.J., Howlett, B.J. and McFadden, G.I. 1995. Organisation and sequence analysis of nuclear-encoded 5S ribosomal RNA genes in cryptomonad algae. Curr. Genet. 27: 239-242.PubMedGoogle Scholar
  14. Kamisugi, Y., Nakayama, S., O'Neill, C.M., Mathisas, R.J., Trick, M. and Fukui, K. 1998. Visualization of the Brassica self-incompatibility S-locus on identified oilseed rape chromosomes. Plant Mol. Biol. 38: 1081-1087.PubMedGoogle Scholar
  15. Katoh, K., Hori, H. and Osawa, S. 1983. The nucleotide sequences of 5S ribosomal RNAs from four Bryophyta species. Nucl. Acids Res. 11: 5671-5674.PubMedGoogle Scholar
  16. Kranz, H.D., Miks, D., Siegler, M.L., Capesius, I., Sensen, C.W. and Huss, V.A. 1995. The origin of land plants: phylogenetic relationships among charophytes, bryophytes, and vascular plants inferred from complete small-subunit ribosomal RNA gene sequences. J. Mol. Evol. 41: 74-84.PubMedGoogle Scholar
  17. Marco, Y. and Rochaix, J.D. 1980. Organization of the nuclear ribosomal DNA of Chlamydomonas reinhardii. Mol. Gen. Genet. 177: 715-723.PubMedGoogle Scholar
  18. Oda, K., Yamato, K., Ohta, E., Nakamura, Y., Takemura, M., Nozato, N., Akashi, K., Kanegae, T., Ogura, Y., Kohchi, T. and Ohyama, K. 1992. Gene organization deduced from complete sequence of liverwort, Marchantia polymorpha mitochondrial DNA: a primitive form of plant mitochondrial genome. J. Mol. Biol. 223: 1-7.PubMedGoogle Scholar
  19. Ohmido, N., Akiyama, Y. and Fukui, K. 1998. Physical mapping of unique nucleotide sequences on identified rice chromosomes. Plant Mol. Biol. 38: 1043-1052.PubMedGoogle Scholar
  20. Ohyama, K., Fukuzawa, H., Kohchi, T., Shirai, H., Sano, T., Sano, S., Umesono, K., Shiki, K., Takeuchi, M., Chang, Z., Aota, S., Inokuchi, H. and Ozeki, H. 1986. Chloroplast gene organization deduced from complete sequence of liverwort, Marchantia polymorpha chloroplast DNA. Nature 322: 572-574.Google Scholar
  21. Ono, K. 1973. Callus formation in liverwort, Marchantia polymorpha. Jpn. J. Genet. 48: 69-70.Google Scholar
  22. Ono, K., Ohyama, K. and Gamborg, O. 1979. Regeneration of the liverwort Marchantia polymorpha L. from protoplast isolated from cell suspension culture. Plant Sci. Lett. 14: 225-229.Google Scholar
  23. Page, R.D.M. 1996. TREEVIEW: an application to display phylo-genetic trees on personal computers. Computer Appl. Biosci. 12: 357-358.Google Scholar
  24. Pearson, W.R. and Lipman, D.J. 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85: 2444-2448.PubMedGoogle Scholar
  25. Rogers, S.O. and Bendich, A.J. 1987. Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Mol. Biol. 9: 509-520.Google Scholar
  26. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.PubMedGoogle Scholar
  27. Schnare, M.N., Cook, J.R., Gray, M.W. 1990. Fourteen internal transcribed spacers in the circular ribosomal DNA of Euglena gracilis. J. Mol. Biol. 215: 85-91.PubMedGoogle Scholar
  28. Srivastava, A.K. and Schlessinger, D. 1991. Structure and organization of ribosomal DNA. Biochimie 73: 631-638.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Takefumi Sone
    • 1
  • Masaki Fujisawa
    • 1
  • Mizuki Takenaka
    • 1
  • Saiko Nakagawa
    • 1
  • Shohei Yamaoka
    • 1
  • Megumi Sakaida
    • 1
  • Rie Nishiyama
    • 1
  • Katsuyuki T. Yamato
    • 1
  • Nobuko Ohmido
    • 2
  • Kiichi Fukui
    • 2
  • Hideya Fukuzawa
    • 1
  • Kanji Ohyama
    • 1
  1. 1.Laboratory of Plant Molecular Biology, Division of Integrated Life Science, Graduate School of BiostudiesKyoto UniversityKyotoJapan
  2. 2.Laboratory of Rice Genetic EngineeringHokuriku National Agricultural Experiment StationJoetsu, NiigataJapan

Personalised recommendations