Plant Molecular Biology

, Volume 41, Issue 5, pp 645–655 | Cite as

A conserved His-Asp signal response regulator-like gene in Heterosigma akashiwo chloroplasts

  • Michael A. Jacobs
  • Laurie Connell
  • Rose Ann Cattolico
Article

Abstract

Regulation of gene expression in plastids may involve molecular components conserved from cyanobacteria-like ancestors. Among prokaryotes, genes are commonly regulated at the transcriptional level by `two-component' or `His-Asp' signal transducers, consisting of a `sensor kinase', which autophosphorylates at a conserved histidine residue, and a cognate response regulator, which is phosphorylated by the sensor kinase at a conserved aspartate residue. A putative His-Asp response regulator gene (trg1: transcriptional regulatory gene 1) has been identified in the estuarine raphidophytic alga Heterosigma akashiwo. The chloroplast-encoded trg1 is 693 bp in length, contains no introns, and yields a conceptual translation product of 231 amino acids, with a predicted mass of 27 kDa. Homology searches suggest that Heterosigma trg1 has an ompR-like identity within the DNA-binding His-Asp family of response regulators. trg1 contains both the phosphorylation and DNA-binding domains which are present in prokaryote response regulators. Quantitative competitive RT-PCR showed that Heterosigma trg1 is expressed at low levels (5 μg per g total RNA). In contrast, psbA (a photosystem II component) transcript is abundant (60 mg per g total RNA). Cell cycle analysis showed that psbA abundance oscillates in response to light but trg1 mRNA levels are invariant. We hypothesize that a His-Asp phosphorelay mechanism may affect chloroplast genome transcription in a manner similar to bacterial signal transduction pathways in which `sensor kinase' and cognate `response regulator' proteins interact.

chloroplast Heterosigma His-Asp response regulator signal transduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernard, C., de Marsac, N.T. and Thomas, J. 1994. An ompR gene in the plastid genome of Rhodella violacea. Plant Physiol. 106: 795-796.PubMedGoogle Scholar
  2. Brandstatter, I. and Kieber, J.J. 1998. Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis. Plant Cell 10: 1009-1019.PubMedGoogle Scholar
  3. Bulow, S. and Link, G. 1988. Sigma-like activity from mustard (Sinapsis alba L.) chloroplasts conferring DNA-binding and transcription specificity to E. coli core RNA polymerase. Plant Mol Biol. 10: 349-357.Google Scholar
  4. Cattolico, R.A., Boothroyd, J.C. and Gibbs, S.P. 1976. Synchronous growth and plastid replication in the naturally wall-less alga Olisthodiscus luteus. Plant Physiol. 57: 497-503.Google Scholar
  5. Chang, C. and Meyerowitz, E.M. 1994. Eukaryotes have 'two component' signal transducers. Res. Microbiol. 145: 481-486.PubMedGoogle Scholar
  6. Delaney, T.P. and Cattolico, R.A. 1989. Chloroplast ribosomal DNA organization in the chromophytic alga Olisthodiscus luteus. Curr. Genet. 15: 221-229.PubMedGoogle Scholar
  7. Doran, E. and Cattolico, R.A. 1997. Photoregulation of chloroplast gene transcription in the chromophytic alga Heterosigma carterae. Plant Physiol. 115: 773-781.PubMedGoogle Scholar
  8. Douglas, S.E. and Penny, S.L. 1999. The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J. Mol. Evol. 48: 236-244.PubMedGoogle Scholar
  9. Eisermann, A., Tiller, K. and Link, G. 1990. In vitro transcription and DNA binding characteristics of chloroplast and etioplast extracts from mustard (Sinapsis alba) indicate differential usage of the psbA promoter. EMBO J. 9: 3981-3987.PubMedGoogle Scholar
  10. Gruissem, W. and Tonkyn, J.C. 1993. Control mechanisms of plastid gene expression. Crit. Rev. Plant Sci. 12: 19-55.Google Scholar
  11. Hardison, L.K., Boczar, B.A. and Cattolico, R.A. 1995. psbA in the marine chromophyte Heterosigma carterae: evolutionary analysis and comparative structure of the D1 carboxyl terminus. Am. J. Bot. 82: 893-902.Google Scholar
  12. Hoch, J.A. and Silhavy, T.J. (Eds.) 1995. Two-Component Signal Transduction, ASM Press, Washington, D.C., 488 pp.Google Scholar
  13. Hughes, J.E., Neuhaus, H.G. and Link, G. 1987. Transcript levels of two adjacent chloroplast genes during mustard (Sinapsis alba L.) seedling development are under differential temporal and light control. Plant Mol. Biol. 9: 355-363.Google Scholar
  14. Hwang, S., Kawazoe, R. and Herrin, D.L. 1996. Transcription of tufA and other chloroplast genes is controlled by a circadian clock in Chlamydomonas. Proc Natl. Acad. Sci USA 93: 996-1000.PubMedGoogle Scholar
  15. Imamura, A., Hanaki, N., Umeda, H., Nakamura, A., Suzuki, A., Ueguchi, C. and Mizuno, T. 1998. Response regulators implicated in His-to-Asp phosphotransfer signalling in Arabidopsis. Proc. Natl. Acad. Sci USA 95: 2691-2696.PubMedGoogle Scholar
  16. Kessler, U., Maid, U. and Zetsche, K. 1992. An equivalent to bacterial ompR genes is encoded on the plastid genome of red algae. Plant Mol. Biol. 18: 777-780.PubMedGoogle Scholar
  17. Klein, U., de-Camp, J.D. and Bogorad, L. 1992. Two types of chloroplast gene promoters in Chlamydomonas reinhardtii. Proc Natl. Acad. Sci. USA 89: 3453-3457.PubMedGoogle Scholar
  18. Kohata, K. and Watanabe, M. 1986. Synchronous division and the pattern of diel vertical migration of Heterosigma akashiwo (Hada) Hada (Raphidophyceae) in a laboratory culture tank. J. Exp. Mar. Biol. Ecol 100: 209-224.Google Scholar
  19. Kohata, K. and Watanabe, M. 1989. Diel changes in the composition of photosynthetic pigments in Chattonella antiqua and Heterosigma akashiwo (Raphidophyceae). In: T. Okaichi, D.M. Anderson and R. Nemoto (Eds.), Red Tides: Biology, Environmental Science, and Toxicology, Elsevier Science Publishing, New York, pp. 329-332.Google Scholar
  20. Koshland, D.E. Jr. 1993. The two-component pathway comes to eukaryotes. Science 262: 532.PubMedGoogle Scholar
  21. Krupinska, K. 1992. Transcriptional control of plastid gene expression during development of primary foliage leaves of barley grown under a daily light-dark regime. Planta 186: 294-303.CrossRefGoogle Scholar
  22. Kubicki, A., Steinmuller, K. and Westhoff, P. 1994. Differential transcription of plastome-encoded genes in the mesophyll and bundle-sheath chloroplasts of the monocotyledonous NADP-malic enzyme-type C4 plants maize and Sorghum. Plant Mol. Biol. 25: 669-679.PubMedGoogle Scholar
  23. Lerbs, S., Bräutigam, E. and Mache, R. 1988. DNA-dependent RNA polymerase of spinach chloroplasts: characterization of alpha-like and sigma-like polypeptides. Mol. Gen. Genet 211: 459-464.Google Scholar
  24. Link, G. 1996. Green life: control of chloroplast gene transcription. BioEssays 18: 465-471.Google Scholar
  25. Liu, B. and Troxler, R.F. 1996. Molecular characterization of a positively photoregulated nuclear gene for a chloroplast RNA polymerase sigma factor in Cyanidium caldarium. Proc. Natl. Acad. Sci. USA 93: 3313-3318.PubMedGoogle Scholar
  26. Mayfield, S.P., Yohn, C.B., Cohen, A. and Danon, A. 1995. Regulation of chloroplast gene expression. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 147-166.Google Scholar
  27. McIntosh, J. and Cattolico, R.A. 1978. Preservation of algal and higher plant ribosomal RNA integrity during extraction and electrophoretic quantitation. Anal. Biochem. 91: 600-612.PubMedGoogle Scholar
  28. Mizuno, T. 1997. Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli. DNA Res. 4: 161-168.PubMedGoogle Scholar
  29. Mizuno, T., Kaneko, T. and Tabata, S. 1996. Compilation of all genes encoding bacterial two-component signal transducers in the genome of the cyanobacterium Synechocystis sp. strain PCC 6803. DNA Res. 3: 407-414.PubMedGoogle Scholar
  30. Nakano, T., Murakami, S., Shoji, T., Yoshida, S., Yamada, Y. and Sato, F. 1997. A novel protein with DNA binding activity from tobacco chloroplast nucleoids. Plant Cell 9: 1673-1682.PubMedGoogle Scholar
  31. Pao, G.M., Lam, R., Lipschitz, L.S. and Saier, M.H.J. 1994. Response regulators: structure, function, and evolution. Res. Microbiol. 145: 356-362.PubMedGoogle Scholar
  32. Pao, G.M. and Saier, M.H. Jr. 1995. Response regulators of bacterial signal transduction systems: selective domain shuffling during evolution, J. Mol. Evol. 40: 136-154.PubMedGoogle Scholar
  33. Parkinson, J.S. and Kofoid, E.C. 1992. Communication modules in bacterial signaling proteins. Annu. Rev. Genet. 26: 71-112.PubMedGoogle Scholar
  34. Quon, K.C., Marczynski, G.T. and Shapiro, L. 1996. Cell cycle control by an essential bacterial two-component signal transduction protein. Cell 84: 83-93.PubMedGoogle Scholar
  35. Reith, M.E. and Cattolico, R.A. 1985. Chloroplast protein synthesis in the chromophytic alga Olisthodiscus luteus. Plant Physiol. 79: 231-236.Google Scholar
  36. Reith, M. and Cattolico, R.A. 1986. Inverted repeat of Olisthodiscus luteus chloroplast DNA contains genes for both subunits of ribulose-1,5-bisphosphate carboxylase and the 32 000-dalton QB protein: phylogenetic implications. Proc. Natl. Acad. Sci. USA 83. 8599-8603.Google Scholar
  37. Reith, M. and Munholland, J. 1993. A high-resolution map of the chloroplast genome of the red alga Porphyra purpurea. Plant Cell 5: 465-475.CrossRefPubMedGoogle Scholar
  38. Reynolds, A.E., McConaughy, B.L. and Cattolico, R.A. 1993. Chloroplast genes of the marine alga Heterosigma carterae are transcriptionally regulated during a light/dark cycle. Mol. Mar. Biol. Biotechnol. 2: 121-128.Google Scholar
  39. Sakai, H., Aoyama, T., Bono, H. and Oka, A. 1998. Two-component response regulators from Arabidopsis thaliana contain a putative DNA-binding motif. Plant Cell Physiol. 39: 1232-1239.PubMedGoogle Scholar
  40. Satoh, E., Watanabe, M.M. and Fujii, T. 1987. Photoperiodic regulation of cell division and chloroplast replication in Heterosigma akashiwo. Plant Cell Physiol. 28: 1093-1099.Google Scholar
  41. Schaller, G.E. 1997. Ethylene and cytokinin signalling in plants: the role of two-component systems. Essays Biochem 32: 101-111.PubMedGoogle Scholar
  42. St. Amand, D., Pottage, C., Henry, P. and Fahnestock, M. 1996. Method for quantitation of low-abundance nerve growth factor in human nervous tissue using competitive reverse transcription polymerase chain reaction. DNA Cell Biol. 15: 415-422.PubMedGoogle Scholar
  43. Stock, A.M., Martinez-Hackert, E., Rasmussen, B.F., West, A.H., Stock, J.B., Ringe, D and Petsko, G.A. 1993. Structure of the Mg 2 C-bound form of CheY and mechanism of phosphoryl transfer in bacterial chemotaxis. Biochemistry 32: 13375-13380.PubMedGoogle Scholar
  44. Suzuki, T., Imamura, A., Ueguchi, C. and Mizuno, T. 1998. Histidine-containing phosphotransfer (HPt) signal transducers implicated in His-to-Asp phosphorelay in Arabidopsis. Plant Cell Physiol. 39: 1258-1268.PubMedGoogle Scholar
  45. Tanaka, K., Oikawa, K., Kuroiwa, H., Kuroiwa, T. and Takahashi, H. 1996. Nuclear encoding of a chloroplast RNA polymerase sigma subunit in a red alga. Science 272: 1932-1935.PubMedGoogle Scholar
  46. Throndsen, J. 1996. Note on the taxonomy of Heterosigma akashiwo (Raphidophyceae). Phycologia 35: 367.Google Scholar
  47. Tiller, K. 1993. Sigma-like transcription factors from mustard (Sinapsis alba L.) etioplast are similar in size to, but functionally distinct from, their chloroplast counterparts. Plant Mol. Biol. 21: 503-513.PubMedGoogle Scholar
  48. Tiller, K., Eisermann, A. and Link, G. 1991. The chloroplast transcription apparatus from mustard (Sinapis alba L.). Eur. J. Biochem. 198: 93-99.PubMedGoogle Scholar
  49. Troxler, R.F., Zhang, F., Hu, J. and Bogorad, L. 1994. Evidence that sigma factors are components of chloroplast RNA polymerase. Plant Physiol 104: 753-759.PubMedGoogle Scholar
  50. Valentin, K., Fischer, S. and Cattolico, R.A. 1998. The chloroplast bchI gene encodes a subunit of magnesium chelatase in the marine heterokont alga Heterosigma carterae. Eur. J. Phycol. 33: 113-120.Google Scholar
  51. Volz, K. 1993. Structural conservation in the CheY superfamily. Biochem. Wash. 32: 11741-11753.Google Scholar
  52. Yamada, H., Hanaki, N., Imamura, A., Ueguchi, C. and Mizuno, T. 1998. An Arabidopsis protein that interacts with the cytokinin-inducible response regulator, AAR4, implicated in the His-Asp phosphorelay signal transduction. FEBS Lett. 436: 76-80.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Michael A. Jacobs
    • 1
  • Laurie Connell
    • 1
  • Rose Ann Cattolico
    • 2
  1. 1.Department of BotanyUniversity of WashingtonSeattleUSA
  2. 2.Departments of Botany and OceanographyUniversity of WashingtonSeattleUSA

Personalised recommendations