Plant Molecular Biology

, Volume 42, Issue 1, pp 225–249

Genome evolution in polyploids

  • Jonathan F. Wendel
Article

Abstract

Polyploidy is a prominent process in plants and has been significant in the evolutionary history of vertebrates and other eukaryotes. In plants, interdisciplinary approaches combining phylogenetic and molecular genetic perspectives have enhanced our awareness of the myriad genetic interactions made possible by polyploidy. Here, processes and mechanisms of gene and genome evolution in polyploids are reviewed. Genes duplicated by polyploidy may retain their original or similar function, undergo diversification in protein function or regulation, or one copy may become silenced through mutational or epigenetic means. Duplicated genes also may interact through inter-locus recombination, gene conversion, or concerted evolution. Recent experiments have illuminated important processes in polyploids that operate above the organizational level of duplicated genes. These include inter-genomic chromosomal exchanges, saltational, non-Mendelian genomic evolution in nascent polyploids, inter-genomic invasion, and cytonuclear stabilization. Notwithstanding many recent insights, much remains to be learned about many aspects of polyploid evolution, including: the role of transposable elements in structural and regulatory gene evolution; processes and significance of epigenetic silencing; underlying controls of chromosome pairing; mechanisms and functional significance of rapid genome changes; cytonuclear accommodation; and coordination of regulatory factors contributed by two, sometimes divergent progenitor genomes. Continued application of molecular genetic approaches to questions of polyploid genome evolution holds promise for producing lasting insight into processes by which novel genotypes are generated and ultimately into how polyploidy facilitates evolution and adaptation.

allopolyploidy duplication genome evolution genomic redundancy molecular evolution speciation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen GA, Eccleston CL: Genetic resemblance of allotetraploid Aster ascendens to its diploid progenitors A. falcatus and A. occidentalis. Can J Bot 76: 338–344 (1998).Google Scholar
  2. 2.
    Allendorf FW: Rapid loss of duplicate gene expression by natural selection. Heredity 43: 247–258 (1979).Google Scholar
  3. 3.
    Arnheim N, Krystal M, Schmickel R, Wilson G, Ryder O, Zimmer E:Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and ape. Proc Natl Acad Sci USA 77: 7323–7327 (1980).Google Scholar
  4. 4.
    Arnheim ND: Concerted evolution of multigene families. In: Nei M, Koehn R (eds), Evolution of Genes and Proteins, pp. 38–61. Sinauer, Sunderland, MA (1983).Google Scholar
  5. 5.
    Barrier M, Baldwin BG, Robichaux RH, Purugganan MD: Interspecific hybrid ancestry of a plant adaptive radiation: allopolyploidy of the Hawaiian silversword alliance (Asteraceae) inferred from floral homeotic gene duplications. Mol Biol Evol 16: 1105–1113 (1999).Google Scholar
  6. 6.
    Baum DA: The evolution of plant development. Curr Opin Plant Biol 1: 79–86 (1998).Google Scholar
  7. 7.
    Bayer RJ: New perspectives into the evolution of polyploid complexes. In: van Raamsdonk LWD, den Nijs JCM (eds), Plant Evolution in Man-made Habitats. Proceedings of the VIIth International Symposium of the International Organization of Plant Biosystematists. Rijksherbarium/Hortus Botanicus, Leiden, Netherlands, in press (1999).Google Scholar
  8. 8.
    Bennett MD, Smith JB, Heslop-Harrison JS: Nuclear DNA amounts in angiosperms. Proc R Soc Lond B 216: 179–199 (1982).Google Scholar
  9. 9.
    Bennett ST, Kenton AY, Bennett MD: Genomic in situ hybridization reveals the allopolyploid nature of Milium montianum (Gramineae). Chromosoma 101: 420–424 (1992).Google Scholar
  10. 10.
    Bennetzen JL: The contributions of retroelements to plant genome organization, function and evolution. Trends Microbiol 4: 347–353 (1996).Google Scholar
  11. 11.
    Bennetzen JL: The structure and evolution of angiosperm nuclear genomes. Curr Opin Plant Biol 1: 103–108 (1998).Google Scholar
  12. 12.
    Bennetzen JL, Freeling M: The unified grass genome: synergy in synteny. Genome Res 7: 301–306 (1997).Google Scholar
  13. 13.
    Birchler JA: A study of enzyme activities in a dosage series of the long arm of chromosome one in maize. Genetics 92: 1211–1229 (1979).Google Scholar
  14. 14.
    Birchler JA: The genetic basis of dosage compensation of Alcohol dehydrogenase-1 in maize. Genetics 97: 625–637 (1981).Google Scholar
  15. 15.
    Birchler JA, Newton KJ: Modulation of protein levels in chromosomal dosage series of maize: the biochemical basis of aneuploid syndromes. Genetics 99: 247–266 (1981).Google Scholar
  16. 16.
    Bogorad L: Possibilities for intergenomic integration: regulatory crosscurrents between the plastid and nuclearcytoplasmic compartments. Cell Culture Somatic Cell Genet Plants 7B: 447–466 (1991).Google Scholar
  17. 17.
    Bonierbale MW, Plaisted RL, Tanksley SD: RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120: 1095–1103 (1988).Google Scholar
  18. 18.
    Brochmann C, Nilsson T, Gabrielsen TM: A classic example of postglacial allopolyploid speciation re-examined using RAPD markers and nucleotide sequences: Saxifraga osloensis (Saxifragaceae). Symb Bot Upsala 31: 75–89 (1996).Google Scholar
  19. 19.
    Brochmann C, Stedje B, Borgen L: Gene flow across ploidal levels in Draba (Brassicaceae). Evol Trends Plants 6: 125–134 (1992).Google Scholar
  20. 20.
    Brubaker CL, Paterson AH, Wendel JF: Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome, 42: 184–203 (1999).Google Scholar
  21. 21.
    Buckler ES, Holtsford TP: Zea ribosomal repeat evolution and substitution patterns. Mol Biol Evol 13: 623–632 (1996).Google Scholar
  22. 22.
    Buckler ES, Holtsford TP: Zea systematics: ribosomal ITS evidence. Mol Biol Evol 13: 612–622 (1996).Google Scholar
  23. 23.
    Bureau TE, Ronald PC, Wessler SR: A computer-based systematic survey reveals the predominance of small invertedrepeat elements in wild-type rice genes. Proc Natl Acad Sci USA 93: 8524–8529 (1996).Google Scholar
  24. 24.
    Campbell CS, Wojciechowski MF, Baldwin BG, Alice LA, Donoghue MJ: Persistent nuclear ribosomal DNA sequence polymorphism in the Amelanchier agamic complex (Rosaceae). Mol Biol Evol 14: 81–90 (1997).Google Scholar
  25. 25.
    Chen Q, Armstrong K: Genomic in situ hybridization in Avena sativa. Genome 37: 607–612 (1994).Google Scholar
  26. 26.
    Chen ZJ, Pikaard CS: Transcriptional analysis of nucleolar dominance in polyploid plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc Natl Acad Sci USA 94: 3442–3447 (1997).Google Scholar
  27. 27.
    Cheun WY, Champagne G, Hubert N, Landry BS: Comparison of the genetic maps of Brassica napus and Brassica oleracea. Theor Appl Genet 94: 569–582 (1997).Google Scholar
  28. 28.
    Clark AG: Invasion and maintenance of a gene duplication. Proc Natl Acad Sci USA 91: 2950–2954 (1994).Google Scholar
  29. 29.
    Clegg MT, Cummings MP, Durbin ML: The evolution of plant nuclear genes. Proc Natl Acad Sci USA 94: 7791–7798 (1997).Google Scholar
  30. 30.
    Cluster PD, Calderini O, Pupilli F, Crea F, Damiani F, Arcioni S: The fate of ribosomal genes in three interspecific somatic hybrids of Medicago sativa: three different outcomes including the rapid amplification of new spacer-length variants. Theor Appl Genet 93: 801–808 (1996).Google Scholar
  31. 31.
    Cooke J: Reply to Tony Gibson and Jürg Spring. Trends Genet 14: 49–50 (1998).Google Scholar
  32. 32.
    Cooke J, Nowak MA, Boerlijst M, Maynard-Smith J: Evolutionary origins and maintenance of redundant gene expression during metazoan development. Trends Genet 13: 360–364 (1997).Google Scholar
  33. 33.
    Crawford DJ: Plant Molecular Systematics: Macromolecular Approaches. Wiley, New York (1990).Google Scholar
  34. 34.
    Cronn RC, Wendel JF: Simple methods for isolating homoeologous loci from allopolyploid genomes. Genome 41: 756–762 (1999).Google Scholar
  35. 35.
    Cronn RC, Zhao X, Paterson AH, Wendel JF: Polymorphism and concerted evolution in a tandemly repeated gene family:5S ribosomal DNA in diploid and allopolyploid cottons. J Mol Evol 42: 685–705 (1996).Google Scholar
  36. 36.
    Danna KJ, Workman R, Coryell V, Keim P: 5S rRNA genes in tribe Phaseoleae: array size, number, and dynamics. Genome 39: 445–455 (1996).Google Scholar
  37. 37.
    Devos KM, Atkinson MD, Chinoy CN, Lin CJ, Gale MD: RFLP-based genetic map of the homoeologous group 3 chromosomes of wheat and rye. Theor Appl Genet 83: 931–939 (1992).Google Scholar
  38. 38.
    Doebley JF: Genetics, development and plant evolution. Curr Opin Genet Dev 3: 865–872 (1993).Google Scholar
  39. 39.
    Doebley JF, Lukens L: Transcriptional regulators and the evolution of plant form. Plant Cell 10: 1075–1082 (1998).Google Scholar
  40. 40.
    Dubcovsky J, Dvorák J: Ribosomal RNA multigene loci: nomads of the Triticeae genomes. Genetics 140: 1367–1377 (1995).Google Scholar
  41. 41.
    Durbin ML, Learn GH, Huttley GA, Clegg MT: Evolution of the chalcone synthase gene family in the genus Ipomoea. Proc Natl Acad Sci USA 92: 3338–3342 (1995).Google Scholar
  42. 42.
    Dvorák J, Zhang H-B, Kota RS, Lassner M: Organization and evolution of the 5S ribosomal RNA gene family in wheat and related species. Genome 32: 1003–1016 (1989).Google Scholar
  43. 43.
    Elder JF, Turner BJ: Concerted evolution of repetitive DNA sequences in eukaryotes. Q Rev Biol 70: 297–320 (1995).Google Scholar
  44. 44.
    Feldman M: Cytogenetic activity and mode of action of the pairing homoeologous (Ph1) gene of wheat. Crop Sci 33: 894–897 (1993).Google Scholar
  45. 45.
    Feldman M, Galili G, Levy A: Genetic and evolutionary aspects of allopolyploidy in wheat. In: Barigozzi C (ed), The Origin and Domestication of Cultivated Plants, pp. 83–100. Elsevier, Amsterdam (1986).Google Scholar
  46. 46.
    Feldman M, Liu B, Segal G, Abbo S, Levy AA, Vega JM: Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics 147: 1381–1387 (1997).Google Scholar
  47. 47.
    Feldman M, Lupton FGH, Miller TE: Wheats. In: Smartt J, Simmonds NW (eds), Evolution of Crop Plants, 2nd ed., pp. 184–192. Longman Scientific, London (1995).Google Scholar
  48. 48.
    Felsenburg T, Levy AA, Galili G, Feldman M: Polymorphism of high-molecular weight glutenins in wild tetraploid wheat: spatial and temporal variation in a native site. Isr J Bot 40: 451–479 (1991).Google Scholar
  49. 49.
    Ferris SD: Tetraploidy and the evolution of catastomid fishes. In: Turner B (ed), Evolutionary Genetics of Fishes, pp. 55–93. Plenum, New York (1984).Google Scholar
  50. 50.
    Ferris SD, Whitt GS: Loss of duplicate gene expression after polyploidization. Nature 265: 258–260 (1977).Google Scholar
  51. 51.
    Ferris SD, Whitt GS: Evolution of the differential regulation of duplicate genes after polyploidization. J Mol Evol 12: 267–317 (1979).Google Scholar
  52. 52.
    Finnegan EJ, Genger RK, Peacock WJ, Dennis ES: DNA methylation in plants. Annu Rev Plant Physiol Plant Mol Biol 49: 223–247 (1998).Google Scholar
  53. 53.
    Fisher RA: The sheltering of lethals. Am Nat 69: 446–455 (1935).Google Scholar
  54. 54.
    Flavell RB: Inactivation of gene expression in plants as a consequence of specific sequence activation. Proc Natl Acad Sci USA 91: 3490–3496 (1994).Google Scholar
  55. 55.
    Furner IJ, Sheikh MA, Collett CE: Gene silencing and homology-dependent gene silencing in Arabidopsis: genetic modifiers and DNA methylation. Genetics 149: 651–662 (1998).Google Scholar
  56. 56.
    Galili G, Feldman M: Diploidization of endosperm protein genes in polyploid wheats. 6th International Wheat Genetics Symposium, pp. 1119–1123, Kyoto (1983).Google Scholar
  57. 57.
    Galili G, Feldman M: Intergenomic suppression of endosperm protein genes in common wheat. Can J Genet Cytol 26: 651–656 (1984).Google Scholar
  58. 58.
    Galili G, Levy AA, Feldman M: Gene-dosage compensation of endosperm proteins in hexaploid wheat Triticum aestivum. Proc Natl Acad Sci USA 83: 6524–6528 (1986).Google Scholar
  59. 59.
    Gastony GJ: Gene silencing in a polyploid homosporous fern: paleopolyploidy revisited. Proc Natl Acad Sci USA 88: 1602–1605 (1991).Google Scholar
  60. 60.
    Gaut BS, Doebley JF: DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA 94: 6808–6814 (1997).Google Scholar
  61. 61.
    Geever RF, Katterman FRH, Endrizzi JE: DNA hybridization analyses of a Gossypium allotetraploid and two closely related diploid species. Theor Appl Genet 77: 553–559 (1989).Google Scholar
  62. 62.
    Gibson TJ, Spring J: Genetic redundancy in vertebrates: polyploidy and persistence of genes encoding multidomain proteins. Trends Genet 14: 46–49 (1998).Google Scholar
  63. 63.
    Gó mez MI, Islam-Faridi MN, Zwick MS, Czeschin DG, Hart GE, Wing RA, Stelly DM, Price HJ: Tetraploid nature of Sorghum bicolor (L.) Moench. J Hered 89: 188–190 (1998).Google Scholar
  64. 64.
    Gó mez MI, Johnston JS, Ellison JR, Price HJ: Nuclear 2C DNA content of Gossypium hirsutum L. accessions determined by flow cytometry. Biol Zentralblatt 112: 351–357. (1993).Google Scholar
  65. 65.
    Gottlieb LD: Electrophoretic evidence and plant populations. Prog Phytochem 7: 1–46 (1981).Google Scholar
  66. 66.
    Gottlieb LD: Conservation and duplication of isozymes in plants. Science 216: 373–380 (1982).Google Scholar
  67. 67.
    Gottlieb LD, Ford VS: A recently silenced duplicate PgiC locus in Clarkia. Mol Biol Evol 14: 125–132 (1997).Google Scholar
  68. 68.
    Grandbastien M-A: Retroelements in higher plants. Trends Genet 8: 103–108 (1992).Google Scholar
  69. 69.
    Grandbastien M-A, Spielmann A, Caboche M: Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337: 376–380 (1989).Google Scholar
  70. 70.
    Grant V: Plant Speciation. Columbia University Press, New York (1981).Google Scholar
  71. 71.
    Guo M, Birchler JA: Trans-acting dosage effects on the expression of model gene systems in maize aneuploids. Science 266: 1999–2002 (1994).Google Scholar
  72. 72.
    Guo M, Davis D, Birchler JA: Dosage effects on gene expression in a maize ploidy series. Genetics 142: 1349–1355 (1996).Google Scholar
  73. 73.
    Haldane JBS: The part played by recurrent mutation in evolution. Am Nat 67: 5–19 (1933).Google Scholar
  74. 74.
    Hanson RE, Islam-Faridi MN, Crane CF, Zwick MS, Czeschin DC, Wendel JF, McKnight TD, Price HJ, Stelly DM: Ty1-copia-like retrotransposon behavior in a polyploid. Chrom Res, in press (1999).Google Scholar
  75. 75.
    Hanson RE, Islam-Faridi MN, Percival EA, Crane CF, Ji Y, McKnight TD, Stelly DM, Price HJ: Distribution of 5S and18S-28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and its putative diploid ancestors. Chromosoma 105: 55–61 (1996).Google Scholar
  76. 76.
    Hanson RE, Zhao X-P, Islam-Faridi MN, Paterson AH, Zwick MS, Crane CF, McKnight TD, Stelly DM, Price HJ: Evolution of interspersed repetitive elements in Gossypium (Malvaceae). Am J Bot 85: 1364–1368 (1998).Google Scholar
  77. 77.
    Harberd NP, Flavell RB, Thompson RD: Identification of a transposon-like insertion in a Glu-1 allele of wheat. Mol Gen Genet 209: 326–332 (1987).Google Scholar
  78. 78.
    Harlan JR, DeWet JMJ: On Ö. Winge and a prayer: the origins of polyploidy. Bot Rev 41: 361–390 (1975).Google Scholar
  79. 79.
    Hart GE: Genetics and evolution of multilocus isozymes in hexaploid wheat. In: Isozymes: Current Topics in Biological and Medical Research, pp. 365–380. Alan R. Liss, New York (1983).Google Scholar
  80. 80.
    Hart GE: Determination of relationships in the tribe Triticeae by genetic and biochemical studies of enzymes. In: Heyne EG (ed), Wheat and Wheat Improvement, pp. 199–214. American Society of Agronomists, Madison, WI (1987).Google Scholar
  81. 81.
    Hart GE: Genome analysis in the Triticeae using isozymes. In: Jauhar PJ (ed), Methods of Genome Analysis in Plants, pp. 195–209. CRC Press, Boca Raton, FL (1996).Google Scholar
  82. 82.
    Haufler CH: Electrophoresis is modifying our concepts of evolution in homosporous pteridophytes. Am J Bot 74: 953–966 (1987).Google Scholar
  83. 83.
    Helariutta Y, Kotilainen M, Elomaa P, Kalkkinen N, Bremer K, Teeri TH, Albert VA: Duplication and functional divergence in the chalcone synthase gene family of Asteraceae: evolution with substrate change and catalytic simplification. Proc Natl Acad Sci USA 93: 9033–9038 (1996).Google Scholar
  84. 84.
    Helentjaris T, Weber D, Wright S: Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms. Genetics 118: 353–363 (1988).Google Scholar
  85. 85.
    Hillis DM, Dixon MT: Ribosomal DNA:molecular evolution and phylogenetic inference. Q Rev Biol 66: 411–453 (1991).Google Scholar
  86. 86.
    Hilu KW: Polyploidy and the evolution of domesticated plants. Am J Bot 80: 1494–1499 (1993).Google Scholar
  87. 87.
    Hirochika H: Activation of tobacco retrotransposons during tissue culture. EMBO J 12: 2521–2528 (1993).Google Scholar
  88. 88.
    Hirochika H, Sugimoto K, Otsuki Y, Kanda M: Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93: 7783–7788 (1996).Google Scholar
  89. 89.
    Holliday R, Ho T: Evidence for gene silencing by endogenous DNA methylation. Proc Natl Acad Sci USA 95: 8727–8732 (1998).Google Scholar
  90. 90.
    Hu J, Anderson B, Wessler SR: Isolation and characterization of rice R genes: evidence for distinct evolutionary paths in rice and maize. Genetics 142: 1021–1031 (1996).Google Scholar
  91. 91.
    Hu W, Timmermans MCP, Messing J: Interchromosomal recombination in Zea mays. Genetics 150: 1229–1237 (1998).Google Scholar
  92. 92.
    Hughes AL: The evolution of functionally novel proteins after gene duplication. Proc R Soc Lond B 256: 119–124 (1994).Google Scholar
  93. 93.
    Hughes MK, Hughes AL: Evolution of duplicate genes in a tetraploid animal Xenopus laevis. Mol Biol Evol 10: 1360–1369 (1993).Google Scholar
  94. 94.
    Huttley GA, Durbin ML, Glover DE, Clegg MT: Nucleotide polymorphism in the chalcone synthase-A locus and evolution of the chalcone synthase multigene family of common morning glory, Ipomoea purpurea. Mol Ecol 6: 549–558 (1997).Google Scholar
  95. 95.
    Iglesias VA, Moscone EA, Papp I, Neuhuber F, Michalowski S, Phelan T, Spiker S, Matzke M, Matzke AJM: Molecular and cytogenetic analysis of stably and unstably expressed transgene loci in tobacco. Plant Cell 9: 1251–1264 (1997).Google Scholar
  96. 96.
    Jackson RC: Evolution and systematic significance of polyploidy. Annu Rev Ecol Syst 7: 209–234 (1976).Google Scholar
  97. 97.
    Jackson RC: Cytogenetics of polyploids and their diploid progenitors. In: Gupta PK, Tsuchiya T (eds), Chromosome Engineering in Plants: Genetics, Breeding, Evolution, Part A., pp. 159–180. Elsevier, Amsterdam (1991).Google Scholar
  98. 98.
    Jellen EN, Gill BS, Cox TS: Genomic in situ hybridization differentiates between A/D-and C-genome chromatin and detects intergenomic translocations in polyploid oat species (genus Avena). Genome 37: 613–618 (1994).Google Scholar
  99. 99.
    Jiang C, Wright R, El-Zik K, Paterson AH: Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci USA 95: 4419–4424 (1998).Google Scholar
  100. 100.
    Jiang J, Gill BK: New 18S-26S ribosomal RNA gene loci: chromosomal landmarks for the evolution of polyploid wheats. Chromosoma 103: 179–185 (1994).Google Scholar
  101. 101.
    Jorgensen RA: Co-suppression, flower color patterns, and metastable gene expression states. Science 268: 686–691 (1995).Google Scholar
  102. 102.
    Kellogg EA: Relationships of cereal crops and other grasses. Proc Natl Acad Sci USA 95: 2005–2010 (1998).Google Scholar
  103. 103.
    Kenton A, Parokonny AS, Gleba YY, Bennett MD: Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol Gen Genet 240: 159–169 (1993).Google Scholar
  104. 104.
    Kidwell MG, Lisch D: Transposable elements as sources of variation in animals and plants. Proc Natl Acad Sci USA 94: 7704–7711 (1997).Google Scholar
  105. 105.
    Kim K-J, Jansen RK: Comparisons of phylogenetic hypotheses among different data sets in dwarf dandelions (Krigia, Asteraceae): additional information from internal transcribed spacer sequences of nuclear ribosomal DNA. Plant Syst Evol 190: 157–185 (1994).Google Scholar
  106. 106.
    Kimura M, King JL: Fixation of a deleterious allele at one of two duplicate loci by mutation pressure and random drift. Proc Natl Acad Sci USA 76: 2858–2861 (1979).Google Scholar
  107. 107.
    Kimura M, Ohta T: On some principles governing molecular evolution. Proc Natl Acad Sci USA 71: 2848–2852 (1974).Google Scholar
  108. 108.
    Lagercrantz U: Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent recombinations. Genetics 150: 1217–1228 (1998).Google Scholar
  109. 109.
    Lagercrantz U, Lydiate DJ: Comparative genome mapping in Brassica. Genetics 144: 1903–1910 (1996).Google Scholar
  110. 110.
    Lagudah ES, Clarke BC, Appels R: Phylogenetic relationships of Triticum tauschii, the D-genome donor to hexaploid wheat. IV. Variation and chromosomal location of 5S DNA. Genome 32: 1017–1025 (1989).Google Scholar
  111. 111.
    Larhammer D, Risinger C: Why so few pseudogenes in tetraploid species? Trends Genet 10: 418–419 (1994).Google Scholar
  112. 112.
    Leitch IJ, Bennett MD: Polyploidy in angiosperms. Trends Plant Sci 2: 470–476 (1997).Google Scholar
  113. 113.
    Leon P, Arroyo A, Mackenzie S: Nuclear control of plastid and mitochondrial development in higher plants. Annu Rev Plant Physiol Plant Mol Biol 49: 453–480 (1998).Google Scholar
  114. 114.
    Levin DA: Polyploidy and novelty in flowering plants. Am Nat 122: 1–25 (1983).Google Scholar
  115. 115.
    Levin DA, Torres AM, Levy M: Alcohol dehydrogenase activity in diploid and autotetraploid Phlox. Biochem Genet 17: 35–42 (1979).Google Scholar
  116. 116.
    Levy AA, Feldman M: Ecogeographical distribution of HMW glutenin alleles in populations of the wild tetraploid wheat Triticum turgidum var. dicoccoides. Theor Appl Genet 75: 651–658 (1988).Google Scholar
  117. 117.
    Lewis WH: Polyploidy: Biological Relevance. Plenum, New York (1980).Google Scholar
  118. 118.
    Li W-H: Rate of gene silencing at duplicate loci: a theoretical study and interpretation of data from tetraploid fishes. Genetics 95: 237–258 (1980).Google Scholar
  119. 119.
    Li W-H: Accelerated evolution following gene duplication and its implications for the neutralist-selectionist controversy. In: Ohta T, Aoki K (eds), Population Genetics and Molecular Evolution, pp. 333–353. Springer-Verlag, Berlin (1985).Google Scholar
  120. 120.
    Lichten M, Goldman ASH: Meiotic recombination hotspots. Annu Rev Genet 29: 423–444 (1995).Google Scholar
  121. 121.
    Lister C, Jackson D, Martin C: Transposon-induced inversion in Antirrhinum modifies nivea gene expression to give a novel flower color pattern under the control of cycloidea radialis. Plant Cell 5: 1541–1553 (1993).Google Scholar
  122. 122.
    Liu B, Vega JM, Feldman M: Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. II. Changes in low-copy coding DNA sequences. Genome 41: 535–542 (1998).Google Scholar
  123. 123.
    Liu B, Vega JM, Segal G, Abbo S, Rodova M, Feldman M: Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. I. Changes in low-copy non-coding DNA sequences. Genome 41: 272–277 (1998).Google Scholar
  124. 124.
    Lumaret R, Barrientos E: Phylogenetic relationships and gene flow between sympatric diploid and tetraploid plants of Dactylis glomerata (Gramineae). Plant Syst Evol 169: 81–96 (1990).Google Scholar
  125. 125.
    Lundin LG: Evolution of the vertebrate genome as reflected in paralogous chromosome regions in man and the house mouse. Genomics 16: 1–19 (1993).Google Scholar
  126. 126.
    Maluszynska J, Heslop-Harrison JS: Physical mapping of rDNA loci in Brassica species. Genome 36: 774–781 (1993).Google Scholar
  127. 127.
    Marillonnet S, Wessler SR: Retrotransposon insertion into the maize waxy gene results in tissue-specific RNA processing. Plant Cell 9: 967–978 (1997).Google Scholar
  128. 128.
    Marshall CR, Raff EC, Raff RA: Dollo's law and the death and resurrection of genes. Proc Natl Acad Sci USA 91: 12283–12287 (1994).Google Scholar
  129. 129.
    Maruyama T, Takahata N: Numerical studies of the frequency trajectories in the process of fixation of null genes at duplicate loci. Heredity 46: 49–57 (1981).Google Scholar
  130. 130.
    Masterson J: Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264: 421–424 (1994).Google Scholar
  131. 131.
    Matzke A JM, Matzke MA: Position effects and epigenetic silencing of plant transgenes. Curr Opin Plant Biol 1: 142–148 (1998).Google Scholar
  132. 132.
    Matzke MA, Matzke AJM: Epigenetic silencing of plant transgenes as a consequence of diverse cellular defense responses. Cell Mol Life Sci 54: 94–103 (1998).Google Scholar
  133. 133.
    Matzke MA, Matzke AJM: Gene silencing in plants: relevance for genome evolution and the acquisition of genomic methylation patterns. In: Epigenetics: Novartis Foundation Symposium 214, pp. 168–186. Wiley, Chichester, UK (1998).Google Scholar
  134. 134.
    Matzke MA, Matzke AJM, Eggleston WB: Paramutation and transgene silencing: a common response to invasive DNA? Trends Plant Sci 1: 382–388 (1996).Google Scholar
  135. 135.
    May BP, Dellaporta SL: Transposon sequences drive tissuespecific expression of the maize regulatory gene R-s. Plant J 13: 241–247 (1998).Google Scholar
  136. 136.
    McClintock B: The significance of responses of the genome to challenge. Science 226: 792–801 (1984).Google Scholar
  137. 137.
    Meyer P: DNA methylation and transgene silencing in Petunia hybrida. In: Meyer P (ed), Gene Silencing in Higher Plants and Related Phenomena in Other Eukaryotes, pp. 15–28. Springer-Verlag, Berlin (1995).Google Scholar
  138. 138.
    Meyer P, Saedler H: Homology-dependent gene silencing in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 23–48 (1996).Google Scholar
  139. 139.
    Michaelson MJ, Price HJ, Ellison JR, Johnston JS: Comparison of plant DNA contents determined by Feulgen microspectrophotometry and laser flow cytometry. Am J Bot 78: 183–188 (1991).Google Scholar
  140. 140.
    Moore G, Devos KM, Wang Z: Grasses, line up and form a circle. Curr Biol 5: 737–739 (1995).Google Scholar
  141. 141.
    Muravenko O, Fedotov AR, Punina EO, Federova LI, Grif VG, Zelenin AV: Comparison of chromosome BrdUHoechst-Giemsa banding patterns of the A1 and (AD)2 genomes of cotton. Genome 41: 616–625 (1998).Google Scholar
  142. 142.
    Nadeau JH, Sankoff D: Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution. Genetics 147: 1259–1266 (1997).Google Scholar
  143. 143.
    Novak SJ, Soltis DE, Soltis PS: Ownbey's Tragopogons: 40 years later. Am J Bot 78: 1586–1600 (1991).Google Scholar
  144. 144.
    Ohno S: Evolution by Gene Duplication. Springer-Verlag, New York (1970).Google Scholar
  145. 145.
    Ohno S: Ancient linkage groups and frozen accidents. Nature 244: 259–262 (1973).Google Scholar
  146. 146.
    Ohta T: Further simulation studies on evolution by gene duplication. Evolution 42: 375–386 (1988).Google Scholar
  147. 147.
    Ohta T: Multigene families and the evolution of complexity. J Mol Evol 33: 34–41 (1991).Google Scholar
  148. 148.
    Ohta T: Further examples of evolution by gene duplication revealed through DNA sequence comparisons. Genetics 138: 1331–1337 (1994).Google Scholar
  149. 149.
    O'Neill RJW, O'Neill MJ, Graves JAM: Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393: 68–72 (1998).Google Scholar
  150. 150.
    Ownbey M: Natural hybridization and amphiploidy in the genus Tragopogon. Am J Bot 37: 487–499 (1950).Google Scholar
  151. 151.
    Papp I, Iglesias VA, Moscone EA, Michalowski S, Spiker S, Park Y-D, Matzke MA, Matzke AJM: Structural instability of a transgene locus in tobacco is associated with aneuploidy. Plant J 10: 469–478 (1996).Google Scholar
  152. 152.
    Pasakinskiene I, Anamthawat-Jó nsson K, Humphreys MW, Jones RN: Novel diploids following chromosome elimina247 tion and somatic recombination in Lolium multiflorum × Festuca arundinacea hybrids. Heredity 78: 464–469 (1997).Google Scholar
  153. 153.
    Pébusque M-J, Coulier F, Birnbaum D, Pontarotti P: Ancient large-scale genome duplications: phylogenetic and linkage analyses shed light on chordate genome evolution. Mol Biol Evol 15: 1145–1159 (1998).Google Scholar
  154. 154.
    Petes TD, Pukkila PJ: Meiotic sister chromatid recombination. Adv Genet 33: 41–62 (1995).Google Scholar
  155. 155.
    Pichersky E, Soltis D, Soltis P: Defective chlorophyll a/b-binding protein genes in the genome of a homosporous fern. Proc Natl Acad Sci USA 87: 195–199 (1990).Google Scholar
  156. 156.
    Pickett FB, Meeks-Wagner DR: Seeing double: appreciating genetic redundancy. Plant Cell 7: 1347–1356 (1995).Google Scholar
  157. 157.
    Postlethwait JH et al.: Vertebrate genome evolution and the zebrafish genetic map. Nature Genet 18: 345–349 (1998).Google Scholar
  158. 158.
    Puchta H, Hohn B: From centiMorgans to base pairs: homologous recombination in plants. Trends Plant Sci 1: 340–348 (1996).Google Scholar
  159. 159.
    Purugganan MD: The molecular evolution of development. BioEssays 20: 700–711 (1998).Google Scholar
  160. 160.
    Purugganan M D, Suddith JI: Molecular population genetics of the Arabidopsis CAULIFLOWER regulatory gene: nonneutral evolution and naturally occurring variation in floral homeotic function. Proc Natl Acad Sci USA 95: 8130–8134 (1998).Google Scholar
  161. 161.
    Purugganan MD, Wessler SR: Molecular evolution of the plant R regulatory gene family. Genetics 138: 849–854 (1994).Google Scholar
  162. 162.
    Ramsey J, Schemske DW: Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29: 467–501 (1998).Google Scholar
  163. 163.
    Reeder RH: Mechanisms of nucleolar dominance in animals and plants. J Cell Biol 101: 2013–2016 (1985).Google Scholar
  164. 164.
    Reinisch AJ, Dong J, Brubaker CL, Stelly DM, Wendel JF, Paterson AH: A detailed RFLP map of cotton, Gossypium hirsutum × G. barbadense: chromosome organization and evolution in a disomic polyploid genome. Genetics 138: 829–847 (1994).Google Scholar
  165. 165.
    Rhoades MM: Duplicate genes in maize. Am Nat 85: 105–110 (1951).Google Scholar
  166. 166.
    Richards E: DNAmethylation and plant development. Trends Genet 13: 319–323 (1997).Google Scholar
  167. 167.
    Rodermel S: Subunit control of rubisco biosynthesis: a relic of an endosymbiotic past. Photosyn Res 59: 105–123 (1999).Google Scholar
  168. 168.
    Roelofs D, van Velzen J, Kuperus P, Bachmann K: Molecular evidence for an extinct parent of the tetraploid species Microseris acuminata and M. campestris (Asteraceae, Lactuceae). Mol Ecol 6: 641–649 (1997).Google Scholar
  169. 169.
    Romero D, Palacios R: Gene amplification and genomic plasticity in prokaryotes. Annu Rev Genet 31: 91–111 (1997).Google Scholar
  170. 170.
    Roose ML, Gottlieb LD: Genetic and biochemical consequences of polyploidy in Tragopogon. Evolution 30: 818–830 (1976).Google Scholar
  171. 171.
    Roose ML, Gottlieb LD: Biochemical properties and level of expression of alcohol dehydrogenases in the allotetraploid plant Tragopogon miscellus and its diploid progenitors. Biochem Genet 18: 1065–1085 (1980).Google Scholar
  172. 172.
    Sang T, Crawford DJ, Stuessy TF: Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc Natl Acad Sci USA 92: 6813–6817 (1995).Google Scholar
  173. 173.
    Sasakuma T, Ogihara Y, Tsujimoto H: Genome rearrangement of repetitive sequences in processes of hybridization and amphiploidization in Triticinae. In: Li Z, Xin Z (eds), 8th International Wheat Genetics Symposium, pp. 563–566. China Agricultural Scientech Press, Beijing (1995).Google Scholar
  174. 174.
    Scheid OM, Jakovleva L, Afsar K, Maluszynska J, Paszkowski J: A change in ploidy can modify epigenetic silencing. Proc Natl Acad Sci USA 93: 7114–7119 (1996).Google Scholar
  175. 175.
    Schnable PS, Hsia A-P, Nikolau BJ: Genetic recombination in plants. Curr Biol 1: 123–129 (1998).Google Scholar
  176. 176.
    Sears ER: Genetic control of chromosome pairing in wheat. Annu Rev Genet 10: 31–51 (1976).Google Scholar
  177. 177.
    Seelanan T, Schnabel A, Wendel JF: Congruence and consensus in the cotton tribe. Syst Bot 22: 259–290 (1997).Google Scholar
  178. 178.
    Shi L, Zhu T, Keim P: Ribosomal RNA genes in soybean and common bean: chromosomal organization, expression, and evolution. Theor Appl Genet 93: 136–141 (1996).Google Scholar
  179. 179.
    Shoemaker RC, Polzin K, Labate J, Specht J, Brummer EC, Olson T, Young N, Concibido V, Wilcox J, Tamulonis JP, Kochert G, Boerma HR: Genome duplication in soybean (Glycine subgenus soja). Genetics 144: 329–338 (1996).Google Scholar
  180. 180.
    Sidow A: Gen(ome) duplications in the evolution of early vertebrates. Curr Opin Genet Devel 6: 715–722 (1996).Google Scholar
  181. 181.
    Siedler H, Messmer MM, Schachermayr GM, Winzeler H, Winzeler M, Keller B: Genetic diversity in European wheat and spelt breeding material based on RFLP data. Theor Appl Genet 88: 994–1003 (1994).Google Scholar
  182. 182.
    Small RL, Ryburn JA, Cronn RC, Seelanan T, Wendel JF: The tortoise and the hare: choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. Am J Bot 85: 1301–1315 (1998).Google Scholar
  183. 183.
    Small RL, Ryburn JA, Wendel JF: Low levels of nucleotide diversity at homoeologous Adh loci in allotetraploid cotton (Gossypium L.). Mol Biol Evol 16: 491–501 (1999).Google Scholar
  184. 184.
    Small RL, Wendel JF: The mitochondrial genome of allotetraploid cotton (Gossypium L.). J Hered. 90: 251–253 (1999).Google Scholar
  185. 185.
    Snowdon RJ, Köhler W, Köhler A: Chromosomal localization and characterization of rDNA loci in the Brassica A and C genomes. Genome 40: 582–587 (1997).Google Scholar
  186. 186.
    Soltis DE, Soltis PS: Isozymes in Plant Biology. Dioscorides, Portland, OR (1989).Google Scholar
  187. 187.
    Soltis DE, Soltis PS: Polyploidy, breeding systems and genetic differentiation in homosporous pteridophytes. In: Soltis DE, Soltis PS (eds), Isozymes in Plant Biology, pp. 241–258. Dioscorides, Portland, OR (1989).Google Scholar
  188. 188.
    Soltis DE, Soltis PS: Molecular data and the dynamic nature of polyploidy. Crit Rev Plant Sci 12: 243–273 (1993).Google Scholar
  189. 189.
    Soltis DE, Soltis PS: The dynamic nature of polyploid genomes. Proc Natl Acad Sci USA 92: 8089–8091 (1995).Google Scholar
  190. 190.
    Soltis DE, Soltis PS: Polyploidy: origins of species and genome evolution. Trends Ecol Evol 9: 348–352 (1999).Google Scholar
  191. 191.
    Soltis PS, Doyle JJ, Soltis DE: Molecular data and polyploid evolution in plants. In: Soltis PS, Soltis DE, Doyle JJ (eds), Molecular Systematics of Plants, pp. 177–201. Chapman and Hall, New York (1992).Google Scholar
  192. 192.
    Song K, Lu P, Tang K, Osborn TC: Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92: 7719–7723 (1995).Google Scholar
  193. 193.
    Song K, Tang K, Osborn TC: Development of synthetic Brassica amphidiploids by reciprocal hybridization and comparison to natural amphidiploids. Theor Appl Genet 86: 811–821 (1993).Google Scholar
  194. 194.
    Song KM, Osborn TC, Williams PH: Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). I. Genome evolution of diploid and amphidiploid species. Theor Appl Genet 75: 784–794 (1988).Google Scholar
  195. 195.
    Sossey-Alaouni K, Serieys H, Tersac M, Lambert P, Schilling E, Griveau Y, Kaan F, Bervillé A: Evidence for several genomes in Helianthus. Theor Appl Genet 97: 422–430 (1998).Google Scholar
  196. 196.
    Sperisen C, Ryals J, Meins F: Comparison of cloned genes provides evidence for intergenomic exchange of DNA in the evolution of a tobacco glucan endo-1,3- β-glucosidase gene family. Proc Natl Acad Sci USA 88: 1820–1824 (1991).Google Scholar
  197. 197.
    Spring J: Vertebrate evolution by interspecific hybridization: are we polyploid? FEBS Lett 400: 2–8 (1997).Google Scholar
  198. 198.
    Stam MJ, Mol NM, Kooter JM: The silence of genes in transgenic plants. Ann Bot 79: 3–12 (1997).Google Scholar
  199. 199.
    Stebbins GL: Types of polyploids: their classification and significance. Adv Genet 1: 403–429 (1947).Google Scholar
  200. 200.
    Stebbins GL: Variation and Evolution in Plants. Columbia University Press, New York (1950).Google Scholar
  201. 201.
    Stebbins GL: Chromosomal Evolution in Higher Plants. Edward Arnold, London (1971).Google Scholar
  202. 202.
    Stephens SG: Evolution of the Gene: 'homologous' genetic loci in Gossypium. Cold Spring Harbor Symp Quant Biol 16: 131–140 (1951).Google Scholar
  203. 203.
    Stephens SG: Possible significance of duplication in evolution. Adv Genet 4: 247–265 (1951).Google Scholar
  204. 204.
    Stutz HC, Pope CL, Sanderson SC: Evolutionary studies of Atriplex: adaptive products from the natural hybrid 6n A. tridentata × 4n A. canescens. Am J Bot 66: 1181–1193 (1979).Google Scholar
  205. 205.
    Suh Y, Thien LB, Reeve HE, Zimmer EA: Molecular evolution and phylogenetic implications of internal transcribed spacer sequences of ribosomal DNA in Winteraceae. Am J Bot 80: 1042–1055 (1993).Google Scholar
  206. 206.
    Sybenga J: Chromosome pairing affinity and quadrivalent formation in polyploids: do segmental allopolyploids exist? Genome 39: 1176–1184 (1996).Google Scholar
  207. 207.
    Taylor WC: Regulatory interactions between nuclear and plastid genomes. Annu Rev Plant Physiol Plant Mol Biol 46: 445–474 (1989).Google Scholar
  208. 208.
    Thomas HM, Harper JA, Meredith MR, Morgan WG, King IP: Physical mapping of ribosomal DNA sites in Festuca arundinacea and related species by in situ hybridization. Genome 40: 406–410 (1997).Google Scholar
  209. 209.
    Truco MJ, Hu J, Sadowski J, Quiros CF: Inter-and intragenomic homology of the Brassica genomes: implications for their origin and evolution. Theor Appl Genet 93: 1225–1233 (1996).Google Scholar
  210. 210.
    Van Houten WJH, Scarlett N, Bachmann K: Nuclear DNA markers of the Australian tetraploid Microseris scapigera and its North American diploid relatives. Theor Appl Genet 87: 498–505 (1993).Google Scholar
  211. 211.
    VanderWiel PS, Voytas DF, Wendel JF: Copia-like retrotransposable element evolution in diploid and polyploid cotton (Gossypium L.). J Mol Evol 36: 429–447 (1993).Google Scholar
  212. 212.
    Vaughan HE, Jamilena M, Ruiz Rejon C, Parker JS, Garrido-Ramos MA: Loss of nucleolus-organizer regions during polyploid evolution in Scilla autumnalis. Heredity 71: 574–580 (1993).Google Scholar
  213. 213.
    Vega JM, Feldman M: Effect of the pairing gene Ph1 and premeiotic colchicine treatment on intra-and interchromosome pairing of isochromosomes in common wheat. Genetics 150: 1199–1208 (1998).Google Scholar
  214. 214.
    Vega JM, Feldman M: Effect of the pairing gene Ph1 on centromere misdivision in common wheat. Genetics 148: 1285–1294 (1998).Google Scholar
  215. 215.
    Volkov RA, Borisjuk NV, Panchuk II, Schweizer D, Hemleben V: Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum. Mol Biol Evol 16: 311–320 (1999).Google Scholar
  216. 216.
    Wagner A: The fate of duplicated genes: loss or new function? Bioessays 20: 785–788 (1998).Google Scholar
  217. 217.
    Walsh JB: How often do duplicated genes evolve new functions? Genetics 139: 421–428 (1995).Google Scholar
  218. 218.
    Waters ER, Schaal BA: Biased gene conversion is not occurring among rDNA repeats in the Brassica triangle. Genome 39: 150–154 (1996).Google Scholar
  219. 219.
    Waters ER, Schaal BA: Heat shock induces a loss of rRNAencoding DNA repeats in Brassica nigra. Proc Natl Acad Sci USA 93: 1449–1452 (1996).Google Scholar
  220. 220.
    Watterson GA: On the time for gene silencing at duplicate loci. Genetics 105: 745–766 (1983).Google Scholar
  221. 221.
    Wendel JF: New World tetraploid cottons contain Old World cytoplasm. Proc Natl Acad Sci USA 86: 4132–4136 (1989).Google Scholar
  222. 222.
    Wendel JF, Albert VA: Phylogenetics of the cotton genus (Gossypium L.): character-state weighted parsimony analysis of chloroplast DNA restriction site data and its systematic and biogeographic implications. Syst Bot 17: 115–143 (1992).Google Scholar
  223. 223.
    Wendel JF, Doyle JJ: Phylogenetic incongruence: window into genome history and molecular evolution. In: Soltis PS, Soltis DE, Doyle JJ (eds), Molecular Systematics of Plants II, pp. 265–296. Kluwer Academic Publishers, Dordrecht, Netherlands (1998).Google Scholar
  224. 224.
    Wendel JF, Schnabel A, Seelanan T: Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci USA 92: 280–284 (1995).Google Scholar
  225. 225.
    Wendel JF, Schnabel A, Seelanan T: An unusual ribosomal DNA sequence from Gossypium gossypioides reveals ancient, cryptic, intergenomic introgression. Mol Phyl Evol 4: 298–313 (1995).Google Scholar
  226. 226.
    Wessler SR: Plant retrotransposons: turned on by stress. Curr Biol 6: 959–961 (1996).Google Scholar
  227. 227.
    Wessler SR: Transposable elements and the evolution of gene expression. In: Greenland A, Meyerowitz E, Steer M (eds), SEB Symposium: Control of Plant Development, Genes and Signals, pp. 115–122. Society of Experimental Biology, UK (1997).Google Scholar
  228. 228.
    Wessler SR: Transposable elements associated with normal plant genes. Physiol Plant 103: 581–586 (1998).Google Scholar
  229. 229.
    Wessler SR, Bureau TE, White SE: LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev 5: 814–821 (1995).Google Scholar
  230. 230.
    White SE, Habera LF, Wessler SR: Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. Proc Natl Acad Sci USA 91: 11792–11796 (1994).Google Scholar
  231. 231.
    Whitkus R, Doebley J, Lee M: Comparative genome mapping of sorghum and maize. Genetics 132: 1119–1130 (1992).Google Scholar
  232. 232.
    Wilson HD, Barber SC, Walters T: Loss of duplicate gene expression in tetraploid Chenopodium. Biochem Syst Ecol 11: 7–13 (1983).Google Scholar
  233. 233.
    Wolfe KH, Shields DC: Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387: 708–713 (1997).Google Scholar
  234. 234.
    Wright RJ, Thaxton PM, El-Zik KM, Paterson AH: D Subgenome bias of Xcm resistance genes in tetraploid Gossypium (cotton) suggests that polyploid formation has created novel avenues for evolution. Genetics 149: 1987–1996 (1998).Google Scholar
  235. 235.
    Xu G-W, Magill CW, Schertz KF, Hart GE: A RFLP linkage map of Sorghum bicolor (L.) Moench. Theor Appl Genet 89: 139–145 (1994).Google Scholar
  236. 236.
    Yoder JA, Walsh CP, Bestor TH: Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13: 335–340 (1997).Google Scholar
  237. 237.
    Zhang D, Sang T: Physical mapping of ribosomal RNA genes in peonies (Paeonia; Paeoniaceae) by fluorescent in situ hybridization: implications for phylogeny and concerted evolution. Am J Bot, 735–740 (1999).Google Scholar
  238. 238.
    Zhao X-P, Si Y, Hanson RE, Crane CF, Price HJ, Stelly DM, Wendel JF, Paterson AH: Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton. Genome Res 8: 479–492 (1998).Google Scholar
  239. 239.
    Zhao X-P, Wing RA, Paterson AH: Cloning and characterization of the majority of repetitive DNA in cotton (Gossypium L.). Genome 38: 1177–1188 (1995).Google Scholar
  240. 240.
    Zhu T, Schupp JM, Oliphant A, Keim P: Hypomethylated sequences: characterization of the duplicate soybean genome. Mol Gen Genet 244: 638–645 (1994).Google Scholar
  241. 241.
    Zimmer EA, Martin SL, Beverly SM, Kan YW, Wilson AC: Rapid duplication and loss of genes coding for the chains of hemoglobin. Proc Natl Acad Sci USA 77: 2158–2162 (1980).Google Scholar
  242. 242.
    Zohary D, Feldman M: Hybridization between amphidiploids and the evolution of polyploids in the wheat (Aegilops-Triticum) group. Evolution 16: 44–61 (1962).Google Scholar
  243. 243.
    Zwierzykowski Z, Tayyar R, Brunell M, Lukaszewski AJ: Genome recombination in intergeneric hybrids between tetraploid Festuca pratensis and Lolium multiflorum. J Hered 89: 324–328 (1998).Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Jonathan F. Wendel
    • 1
  1. 1.Department of BotanyIowa State UniversityAmesUSA

Personalised recommendations