Advertisement

Journal of Atmospheric Chemistry

, Volume 37, Issue 1, pp 29–52 | Cite as

Development and Intercomparison of Condensed Isoprene Oxidation Mechanisms for Global Atmospheric Modeling

  • Ulrich Pöschl
  • Rolf von Kuhlmann
  • Nathalie Poisson
  • Paul J. Crutzen
Article

Abstract

A new condensed isoprene oxidation mechanism forglobal atmospheric modeling (MIM) was derived from ahighly detailed master chemical mechanism (MCM). In abox model intercomparison covering a wide range ofboundary layer conditions the MIM was compared withthe MCM and with five other condensed mechanisms, someof which have already been used in global modelingstudies of nonmethane hydrocarbon chemistry. Theresults of MCM and MIM were generally in goodagreement, but the other tested mechanisms exhibitedsubstantial differences relative to the MCM as well asrelative to each other. Different formation yields,reactivities and degradation pathways of organicnitrates formed in the course of isoprene oxidationwere identified as a major reason for the deviations.The relevance of the box model results for chemistrytransport models is discussed, and the need for avalidated reference mechanism and for an improvedrepresentation of isoprene chemistry in global modelsis pointed out.

isoprene oxidation global atmospheric modeling condensed chemical mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, R., 1994: Gas-phase tropospheric chemistry of organic compounds, J. Phys. Chem. Ref. Data 2, 1–216.Google Scholar
  2. Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, F., Kerr, J. A., Rossi, M. J., and Troe, J., 1997: Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry, J. Phys. Chem. Ref. Data 26, 521–1011.Google Scholar
  3. Biesenthal, T. A., Bottenheim, J. W., Shepson, P. B., and Brickell, P. C., 1998: The chemistry of biogenic hydrocarbons at a rural site in eastern Canada, J. Geophys. Res. 103 (D19), 25487–25498.Google Scholar
  4. Brasseur, G. P., Hauglustaine, D. A., Walters, S., Rasch, P. J., Muller, J. F., Granier, C., and Tie, X. X., 1998: MOZART, a global chemical transport model for ozone and related chemical tracers. 1. Model description, J. Geophys. Res. 103 (D21), 28265–28289.Google Scholar
  5. Brühl, C. and Crutzen, P. J., 1989: On the disproportionate role of tropospheric ozone as a filter against solar UV-B radiation, Geophys. Res. Lett. 16 (7), 703–706.Google Scholar
  6. Carslaw, N., Creasey, D. J., Heard, D. E., Lewis, A. C., McQuaid, J. B., Pilling, M. J., Monks, P. S., Bandy, B. J., and Penkett, S. A., 1999: Modeling OH, HO2, and RO2 radicals in the marine boundary layer: 1. Model construction and comparison with field measurements, J. Geophys. Res., in press.Google Scholar
  7. Carslaw, N., Lewis, A. C., McQuaid, J. B., and Pilling, M. J., 1999: A detailed study of isoprene chemistry during the EASE96 campaign: J199, a case study, Atmos. Environ, submitted.Google Scholar
  8. Carter, W. P. L., 1996: Condensed atmospheric photooxidation mechanisms for isoprene, Atmos. Environ. 30, 4275–4290.Google Scholar
  9. Carter, W. P. L. and Atkinson, R., 1996: Development and evaluation of a detailed mechanism for the atmospheric reactions of isoprene and NOx, Int. J. Chem. Kinet. 28, 497–530.Google Scholar
  10. Chen, X. H., Hulbert, D., and Shepson, P. B., 1998: Measurement of the organic nitrate yield from OH reaction with isoprene, J. Geophys. Res. 103 (D19), 25563–25568.Google Scholar
  11. DeMore, W. B., Sander, S. P., Howard, C. J., Ravishankara, A. R., Golden, D. M., Kolb, C. E., Hampson, R. F., Kurylo, M. J., and Molina, M. J., 1997: Chemical kinetics and photochemical data for use in stratospheric modelling, JPL Publication 97–4.Google Scholar
  12. Duncan, B. N. and Chameides, W. L., 1998: Effects of urban emission control strategies on the export of ozone and ozone precursors from the urban atmosphere to the troposphere, J. Geophys. Res. 103 (D21), 28159–28179.Google Scholar
  13. Hauglustaine, D. A., Brasseur, G. P., Walters, S., Rasch, P. J., Muller, J. F., Emmons, L. K., and Carroll, C.A., 1998: MOZART, a global chemical transport model for ozone and related chemical tracers. 2. Model results and evaluation, J. Geophys. Res. 103 (D21), 28291–28335.Google Scholar
  14. Horowitz, L. W., Liang, J. Y., Gardner, G. M., and Jacob, D. J., 1998: Export of reactive nitrogen from North America during summertime: Sensitivity to hydrocarbon chemistry, J. Geophys. Res. 103 (D11), 13451–13476.Google Scholar
  15. Houweling, S., Dentener, F., and Lelieveld, J., 1998: The impact of nonmethane hydrocarbon compounds on tropospheric photochemistry, J. Geophys. Res. 103 (D9), 10673–10696.Google Scholar
  16. Jacobs, P. J., Harrison, D., Carslaw, N., Creasey, D. J., Heard, D. E., Hunter, M. C., Lee, J. D., Lewis, A. C., Pilling, M. J., Saunders, S. M., Seakins, P. W., and Jenkin, M. E.: An experimental and modelling study of OH and HO2 radical chemistry in a forested region of north-western Greece, manuscript in preparation.Google Scholar
  17. Jenkin, M. E., Boyd, A. A., and Lesclaux, R., 1998: Peroxy radical kinetics resulting from the OH initiated oxidation of 1,3-butadiene, 2,3-dimethyl-1,3-butadiene and isoprene, J. Atmos. Chem. 29, 267–298.Google Scholar
  18. Jenkin, M. E., Saunders, S. M., and Pilling, M. J., 1997: The tropospheric degradation of volatile organic compounds: A protocol for mechanism development, Atmos. Environ. 31, 81–104.Google Scholar
  19. von Kuhlmann, R., Lawrence, M. G., Pöschl, U., and Crutzen, P. J., 1999: Sensitivity studies of isoprene and acetone chemistry in a 3-D global model, Geophys. Res. Abs. 1, 498, EGS, The Hague.Google Scholar
  20. Kuhn, M., Builtjes, P. J. H., Poppe, D. Simpson, D., Stockwell, W. R., Anderssonskold, Y., Baart, A., Das, M., Fiedler, F., Hov, O., Kirchner, F., Makar, P. A., Milford, J. B., Roemer, M. G. M., Ruhnke, R., Strand, A., Vogel, B., and Vogel, H., 1998: Intercomparison of the gas-phase chemistry in several chemistry and transport models, Atmos. Environ. 32, 693–709.Google Scholar
  21. Lamb, B., Gay, D., Westberg, H., and Pierce, T., 1993: A biogenic hydrocarbon emission inventory for the U.S.A. using a simple forest canopy model, Atmos. Environ. 27, 1673–1690.Google Scholar
  22. Lawrence, M. G., Crutzen, P. J., Rasch, P. J., Eaton, B. E., and Mahowald, N.M.: A model for studies of tropospheric photochemistry: Description, global distributions, and evaluation, J. Geophys. Res., in press.Google Scholar
  23. Madronich, S. and Calvert, J. G., 1989: The NCAR master mechanism of the gas-phase chemistry-Version 2.0, Rep. NCAR/TN-333+STR, National Center for Atmopheric Research.Google Scholar
  24. Malleson, A. M., Kellett, H. M., Myhill, R. G., and Sweetenham, W. P., 1990: FACSIMILE User Guide, Harwell Laboratory, Oxfordshire.Google Scholar
  25. Moxim, W. J., Levy II, H., and Kasibhatla, P. S., 1996: Simulated global tropospheric PAN: Its transport and impact on NOx, J. Geophys. Res. 101 (D7), 12621–12638.Google Scholar
  26. Müller, J.-F. and Brasseur, G., 1999: Sources of upper tropospheric HOx: A three-dimensional study, J. Geophys. Res. 104 (D1), 1705–1715.Google Scholar
  27. Poisson, N., 1997: Impact des hydrocarbures non méthaniques sur la chimie troposphérique, Université Paris VII, Paris.Google Scholar
  28. Poisson, N., Kanakidou, M., and Crutzen, P. J., 1998: Impact of non-methane hydrocarbons on tropospheric chemistry and particularly the oxidizing power of the global troposphere: 3-Dimensional Modelling results, J. Atmos. Chem., submitted.Google Scholar
  29. Poisson, N., Kanakidou, M., Bonsang, B., Behmann, T., Burrows, J., Fischer, H., Golz, C., Harder, H., Lewis, A., Moortgat, G. K., Nunes, T., Pio, C., Platt, U., Sauer, F., Schuster, G., Seakins, P., Senzig, J., Seuwen, R., Trapp, D., Voltz-Thomas, A., Zenker, T., and Zitzelberger, R., 1999: The impact of natural non-methane hydrocarbon oxidation on the free radical and ozone budgets above a eucalyptus forest, Chemosphere, in press.Google Scholar
  30. Ruppert, L., Spittler, M., and Becker, K. H., 1999: Influence of biogenic hydrocarbons on the ozone formation in a simplified VOC/NOx-Mix, Geophys Res. Abs. 1, 497, EGS, The Hague, 1999.Google Scholar
  31. Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J., 1997: World Wide Web site of a Master Chemical Mechanism (MCM) for use in tropospheric chemistry models, Atmos. Environ. 31, 1249, <http://www.chem.leeds.ac.uk/Atmospheric/MCM/main.html>Google Scholar
  32. Stockwell, W. R., Kirchner, F., Kuhn, M., and Seefeld, S., 1997: A new mechanism for regional atmospheric chemistry modeling, J. Geophys. Res. 102 (D22), 25847–25879.Google Scholar
  33. Warneke, C., Holzinger, R., Hansel, A., Jordan, A., Lindinger, W., Pöschl, U., Williams, J., Crutzen, P. J., Scheeren, H. A., and Lelieveld, J., 1999: Isoprene and its oxidation products methyl vinyl ketone, methacrolein and isoprene related peroxides measured online over a tropical rainforest in Surinam in March 1998, J. Atmos. Chem., in press.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Ulrich Pöschl
    • 1
  • Rolf von Kuhlmann
    • 1
  • Nathalie Poisson
    • 1
  • Paul J. Crutzen
    • 1
  1. 1.Department of Atmospheric ChemistryMax-Planck-Institute for ChemistryMainzGermany

Personalised recommendations