Cancer and Metastasis Reviews

, Volume 18, Issue 2, pp 261–284 | Cite as

The Hedgehog Signalling Pathway and its Role in Basal Cell Carcinoma

  • Daniel R. Booth


The hedgehog signalling pathway plays a vital role in Drosophila embryonic patterning and development. Hedgehog is a secreted protein, unrelated to classical growth factors, which seems to form concentration gradients across those tissues involved in pattern formation. Cloning of vertebrate homologues of hedgehog and other genes has illustrated the remarkable conservation of function of this pathway throughout evolution. The human homologue of patched, a receptor for the hedgehog protein, was cloned as the gene responsible for naevoid basal cell carcinoma syndrome (NBCCS/‘Gorlin Syndrome’), an autosomal dominant condition in which patients suffer from multiple basal cell carcinomas and a wide spectrum of developmental abnormalities. Its role as a tumour suppressor gene in both NBCCS and sporadic basal cell carcinoma led to the suggestion that mutation or inactivation of human patched may be an essential step in development of basal cell carcinomas and other skin tumours. This review describes our current understanding of hedgehog signalling in Drosophila and vertebrates and its relation to the development of human basal cell carcinoma and other skin tumours, together with a discussion of future avenues of research into this critical and intriguing pathway.

hedgehog patched smoothened cubitus interruptus/Gli basal cell carcinoma NBCCS/Gorlin syndrome 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miller SJ: Biology of basal cell carcinoma (Part I). J Am Acad Dermatol 24: 1–13, 1991Google Scholar
  2. 2.
    Coebergh JW, Neumann HA, Vrints LW, van der Heijden L, Meijer WJ, Verhagen-Teulings MT: Trends in the increase of non-melanoma skin cancer in the SE Netherlands 1975–1988: a registry-based study. Br J Dermatol 125: 353–359, 1991Google Scholar
  3. 3.
    Ko CB, Walton S, Keczkes K, Bury HP, Nicholson C: The emerging epidemic of skin cancer. Br J Dermatol 130: 269–272, 1994Google Scholar
  4. 4.
    Hughes JR, Higgins EM, Smith J, Du Vivier AW: Increase in non-melanoma skin cancer — the King's College Hospital experience (1970–92). Clin Exp Dermatol 20: 304–307, 1995Google Scholar
  5. 5.
    Gloster Jr. HM, Brodland DG: The epidemiology of skin cancer. Dermatol Surg 22: 217–226, 1996Google Scholar
  6. 6.
    English DR, Armstrong BK, Kricker A, Fleming C: Sunlight and cancer. Cancer Causes Control 8: 271–283, 1997Google Scholar
  7. 7.
    Quinn AG: Ultraviolet radiation and skin carcinogenesis. Br J Hosp Med 58: 261–264, 1997Google Scholar
  8. 8.
    Gailani MR, Leffell DJ, Ziegler A, Gross EG, Brash DE, Bale AE: Relationship between sunlight exposure and a key genetic alteration in basal cell carcinoma. J Natl Cancer Inst 88: 349–354, 1996Google Scholar
  9. 9.
    Martin H, Strong E, Spiro RH: Radiation-induced skin cancer of the head and neck. Cancer 25: 61–71, 1970Google Scholar
  10. 10.
    Davis MM, Hanke CW, Zollinger TW, Montebello JF, Hornback NB, Norins AL: Skin cancer in patients with chronic radiation dermatitis. J Am Acad Dermatol 20: 608–616, 1989Google Scholar
  11. 11.
    Noodleman FR, Pollack SV: Trauma as a possible etiologic factor in basal cell carcinoma. J Dermtol Surg Oncol 12: 841–846, 1986Google Scholar
  12. 12.
    Shannon RL, Strayer DS: Arsenic-induced skin toxicity. Hum Toxicol 8: 99–104, 1989Google Scholar
  13. 13.
    Wong SS, Tan KC, Goh CL: Cutaneous manifestations of chronic arsenicism: review of seventeen cases. J Am Acad Dermatol 38: 179–185, 1998Google Scholar
  14. 14.
    Bouwes Bavinck JN, Hardie DR, Green A, Cutmore S, MacNaught A, O'Sullivan B, Siskind V, Van Der Woude FJ, Hardie IR: The risk of skin cancer in renal transplant recipients in Queensland, Australia. A follow-up study. Transplantation 61: 715–721, 1996Google Scholar
  15. 15.
    Ogiso Y, Oikawa T, Kondo N, Kuzumaki N, Sugihara T, Ohura T: Expression of proto-oncogenes in normal and tumor tissues of human skin. J Invest Dermatol 90: 841–844, 1988Google Scholar
  16. 16.
    Moles JP, Moyret C, Guillot B, Jeanteur P, Guilhou JJ, Theillet C, Basset-Seguin N: p53 gene mutations in human epithelial skin cancers. Oncogene 8: 583–588, 1993Google Scholar
  17. 17.
    Ananthaswamy HN, Price JE, Goldberg LH, Bales ES: Detection and identification of activated oncogenes in human skin cancers occurring on sun-exposed body sites. Cancer Res 48: 3341–3346, 1988Google Scholar
  18. 18.
    van der Schroeff J, Evers LM, Boot AJ, Bos JL: Ras oncogene mutations in basal cell carcinomas and squamous cell carcinomas of human skin. J Invest Dermatol 94: 423–425, 1990Google Scholar
  19. 19.
    Lieu FM, Yamanishi K, Konishi K, Kishimoto S, Yasuno H: Low incidence of Haras oncogene mutations in human epidermal tumors. Cancer Lett 59: 231–235, 1991Google Scholar
  20. 20.
    Barshak I, Goldberg I, Davidson B, Ravid A, Schiby G, Koplovic J, Leviav A, Friedman E: Expression of the ras-GTPase activating protein in basal cell carcinoma of the skin. Mod Pathol 11: 271–275, 1998Google Scholar
  21. 21.
    Rady P, Scinicariello F, Wagner Jr. RF, Tyring SK: p53 mutations in basal cell carcinomas. Cancer Res 52: 3804–3806, 1992Google Scholar
  22. 22.
    Shea CR, McNutt NS, Volkenandt M, Lugo J, Prioleau PG, Albino AP: Overexpression of p53 protein in basal cell carcinomas of human skin. Am J Pathol 141: 25–29, 1992Google Scholar
  23. 23.
    Konishi K, Yamanishi K, Ishizaki K, Yamada K, Kishimoto S, Yasuno H: Analysis of p53 mutations and loss of heterozygosity for loci on chromosome 9q in basal cell carcinoma. Cancer Lett 79: 67–72, 1994Google Scholar
  24. 24.
    Gailani MR, Bale SJ, Leffell DJ, Digiovanna JJ, Peck GL, Poliak S, Drum MA, Pastakia B, Mcbride OW, Kase R, Greene M, Mulvihill JJ, Bale AE: Developmental defects in Gorlin syndrome related to a putative tumor suppressor gene on chromosome 9. Cell 69: 111–117, 1992Google Scholar
  25. 25.
    Quinn AG, Sikkink S, Rees JL: Delineation of two distinct deleted regions on chromosome 9 in human non-melanoma skin cancers. Genes Chromosomes Cancer 11: 222–225, 1994Google Scholar
  26. 26.
    Quinn AG, Campbell C, Healy E, Rees JL: Chromosome 9 allele loss occurs in both basal and squamous cell carcinomas of the skin. J Invest Dermatol 102: 300–303, 1994Google Scholar
  27. 27.
    Quinn AG, Sikkink S, Rees JL: Basal cell carcinomas and squamous cell carcinomas of human skin show distinct patterns of chromosome loss. Cancer Res 54: 4756–4759, 1994Google Scholar
  28. 28.
    Gorlin RJ: Nevoid basal cell carcinoma syndrome. Dermatol Clin 13: 113–125, 1995Google Scholar
  29. 29.
    Kimonis VE, Goldstein AM, Pastakia B, Yang ML, Kase R, DiGiovanna JJ, Bale AE, Bale SJ: Clinical manifestations in 105 persons with nevoid basal cell carcinoma syndrome. Am J Med Genet 69: 299–308, 1997Google Scholar
  30. 30.
    Farndon PA, Del Mastro RG, Evans DG, Kilpatrick MW: Location of gene for Gorlin syndrome. Lancet 339: 581–582, 1992Google Scholar
  31. 31.
    Chenevix-Trench G, Wicking C, Berkman J, Sharpe H, Hockey A, Haan E, Oley C, Ravine D, Turner A, Goldgar D, Searle J, Wainwright B: Further localization of the gene for nevoid basal cell carcinoma syndrome (NBCCS) in 15 Australasian families: linkage and loss of heterozygosity. Am J Hum Genet 53: 760–767, 1993Google Scholar
  32. 32.
    Wicking C, Berkman J, Wainwright B, Chenevix-Trench G: Fine genetic mapping of the gene for nevoid basal cell carcinoma syndrome. Genomics 22: 505–511, 1994Google Scholar
  33. 33.
    Shanley SM, Dawkins H, Wainwright BJ, Wicking C, Heenan P, Eldon M, Searle J, Chenevix-Trench G: Fine deletion mapping on the long arm of chromosome 9 in sporadic and familial basal cell carcinomas. Hum Mol Genet 4: 129–133, 1995Google Scholar
  34. 34.
    Shimkets R, Gailani MR, Siu VM, Yang-Feng T, Pressman CL, Levanat S, Goldstein A, Dean M, Bale AE: Molecular analysis of chromosome 9q deletions in two Gorlin syndrome patients. Am J Hum Genet 59: 417–422, 1996Google Scholar
  35. 35.
    Hahn H, Wicking C, Zaphiropoulos PG, Gailani MR, Shanley S, Chidambram A, Vorechovsky I, Holmberg E, Unden AB, Gillies S, Negus K, Smyth I, Pressman C, Leffell DJ, Gerrard B, Goldstein AM, Dean M, Toftgard R, Chenevix-Trench G, Wainwright B, Bale AE: Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85: 841–851, 1996Google Scholar
  36. 36.
    Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, Bonifas JM, Quinn AG, Myers RM, Cox DR, Epstein Jr EH: Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272: 1668–1671, 1996Google Scholar
  37. 37.
    Martinez-Arias A, Lawrence PA: Parasegments and compartments in the Drosophila embryo. Nature 313: 639–642, 1985Google Scholar
  38. 38.
    Nusslein-Volhard C, Wieschaus E: Mutations affecting segment number and polarity in Drosophila. Nature 287: 795–801, 1980Google Scholar
  39. 39.
    Mohler J: Requirements for hedgehog, a segmental polarity gene, in patterning larval and adult cuticle of Drosophila. Genetics 120: 1061–1072, 1988Google Scholar
  40. 40.
    Mohler J, Vani K: Molecular organization and embryonic expression of the hedgehog gene involved in cell-cell communication in segmental patterning of Drosophila. Development 115: 957–971, 1992Google Scholar
  41. 41.
    Tabata T, Eaton S, Kornberg TB: The Drosophila hedgehog gene is expressed specifically in posterior compartment cells and is a target of engrailed regulation. Genes Dev 6: 2635–2645, 1992Google Scholar
  42. 42.
    Tashiro S, Michiue T, Higashijima S, Zenno S, Ishimaru S, Takahishi F, Orihara M, Kojima T, Saigo K: Structure and expression of hedgehog, a Drosophila segment-polarity gene required for cell-cell communication. Gene 124: 183–189, 1993Google Scholar
  43. 43.
    Lee JJ, von Kessler DP, Park S, Beachy PA: Secretion and localized transcription suggest a role in positional signaling for products of the segmentation gene hedgehog. Cell 71: 33–50, 1992Google Scholar
  44. 44.
    Tabata T, Kornberg TB: Hedgehog is a signalling protein with a key role in patterning Drosophila imaginal discs. Cell 76: 89–102, 1994Google Scholar
  45. 45.
    Fjose A, MsGinnis WJ, Gehring WJ: Isolation of a homeo box-containing gene from the engrailed region of Drosophila and the spatial distribution of its transcripts. Nature 313: 284–289, 1985Google Scholar
  46. 46.
    Kornberg T: Engrailed: A gene controlling compartment and segment formation in Drosophila. Proc Natl Acad Sci USA 78: 1095–1099, 1981Google Scholar
  47. 47.
    Ingham PW, Hidalgo A: Regulation of wingless transcription in the Drosophila embryo. Development 117: 283–291, 1993Google Scholar
  48. 48.
    Ingham PW: Localized hedgehog activity controls spatial limits of wingless transcription in the Drosophila embryo. Nature 366: 560–562, 1993Google Scholar
  49. 49.
    Hooper JE: Distinct pathways for autocrine and paracrine signalling in Drosophila embryos. Nature 372: 461–464, 1994Google Scholar
  50. 50.
    Klingensmith J, Nusse R: Signaling by wingless in Drosophila. Dev Biol 166: 396–414, 1994Google Scholar
  51. 51.
    Bejsovec A, Wieschaus E: Segment polarity gene interactions modulate epidermal patterning in Drosophila embryos. Development 119: 501–517, 1993Google Scholar
  52. 52.
    Lawrence PA, Sanson B, Vincent JP: compartments, wingless and engrailed: patterning the ventral epidermis of Drosophila embryos. Development 122: 4095–4103, 1996Google Scholar
  53. 53.
    Heemskerk J, DiNardo S: Drosophila hedgehog acts as a morphogen in cellular patterning. Cell 76: 449–460, 1994Google Scholar
  54. 54.
    Struhl G, Barbash DA, Lawrence PA: Hedgehog organises the pattern and polarity of epidermal cells in the Drosophila abdomen. Development 124: 2143–2154, 1997Google Scholar
  55. 55.
    Struhl G, Barbash DA, Lawrence PA: Hedgehog acts by distinct gradient and signal relay mechanisms to organise cell type and cell polarity in the Drosophila abdomen. Development 124: 2155–2165, 1997Google Scholar
  56. 56.
    Hidalgo A, Ingham P: Cell patterning in the Drosophila segment: spatial regulation of the segment polarity gene patched. Development 110: 291–301, 1990Google Scholar
  57. 57.
    Alcedo J, Ayzenzon M, von Ohlen T, Noll M, Hooper JE: The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the hedgehog signal. Cell 86: 221–232, 1996Google Scholar
  58. 58.
    Limbourg-Bouchon B, Busson D, Lamour-Isnard C: Interactions between fused, a segment-polarity gene in Drosophila, and other segmentation genes. Development 112: 417–429, 1991Google Scholar
  59. 59.
    Motzny CK, Holmgren R: The Drosophila cubitus interruptus protein and its role in the wingless and hedgehog signal transduction pathways. Mech Dev 52: 137–150, 1995Google Scholar
  60. 60.
    Martinez Arias A, Baker NE, Ingham PW: Role of segment polarity genes in the definition and maintenance of cell states in the Drosophila embryo. Development 103: 157–170, 1988Google Scholar
  61. 61.
    Ingham PW, Taylor AM, Nakano Y: Role of the Drosophila patched gene in positional signalling. Nature 353: 184–187, 1991Google Scholar
  62. 62.
    Forbes AJ, Nakano Y, Taylor AM, Ingham PW: Genetic analysis of hedgehog signalling in the Drosophila embryo. Dev Suppl 115–124, 1993Google Scholar
  63. 63.
    van den Heuvel M, Ingham PW: Smoothened encodes a receptor-like serpentine protein required for hedgehog signalling. Nature 382: 547–551, 1996Google Scholar
  64. 64.
    Gelbart WM: The decapentaplegic gene: a TGF-beta homologue controlling pattern formation in Drosophila. Dev Suppl 107: 65–74, 1989Google Scholar
  65. 65.
    Capdevila J, Estrada MP, Sanchez-Herrero E, Guerrero I: The Drosophila segment polarity gene patched interacts with decapentaplegic in wing development. EMBO J 13: 71–82, 1994Google Scholar
  66. 66.
    Ingham PW, Fietz MJ: Quantitative effects of hedgehog and decapentaplegic activity on the patterning of the Drosophila wing. Curr Biol 5: 432–440, 1995Google Scholar
  67. 67.
    Zecca M, Basler K, Struhl G: Sequential organizing activities of engrailed, hedgehog and decapentaplegic in the Drosophila wing. Development 121: 2265–2278, 1995Google Scholar
  68. 68.
    de Celis JF, Ruiz-Gomez M: Groucho and hedgehog regulate engrailed expression in the anterior compartment of the Drosophila wing. Development 121: 3467–3476, 1995Google Scholar
  69. 69.
    Johnson RL, Grenier JK, Scott MP: Patched overexpression alters wing disc size and pattern: transcriptional and post-transcriptional effects on hedgehog targets. Development 121: 4161–4170, 1995Google Scholar
  70. 70.
    Strigini M, Cohen SM: A hedgehog activity gradient contributes to AP axial patterning of the Drosophila wing. Development 124: 4697–4705, 1997Google Scholar
  71. 71.
    Diaz-Benjumea FJ, Cohen B, Cohen SM: Cell interaction between compartments establishes the proximal-distal axis of Drosophila legs. Nature 372: 175–179, 1994Google Scholar
  72. 72.
    Basler K, Struhl G: Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 368: 208–214, 1994Google Scholar
  73. 73.
    Burke R, Basler K: Hedgehog signaling in Drosophila eye and limb development — conserved machinery, divergent roles? Curr Opin Neurobiol 7: 55–61, 1997Google Scholar
  74. 74.
    Heberlein U, Singh CM, Luk AY, Donohoe TJ: Growth and differentiation in the Drosophila eye coordinated by hedgehog. Nature 373: 709–711, 1995Google Scholar
  75. 75.
    Salecker I, Clandinin TR, Zipursky SL: Hedgehog and Spitz: Making a match between photoreceptor axons and their targets. Cell 95: 587–590, 1998Google Scholar
  76. 76.
    Forbes AJ, Lin H, Ingham PW, Spradling AC: Hedgehog is required for the proliferation and specification of ovarian somatic cells prior to egg chamber formation in Drosophila. Development 122: 1125–1135, 1996Google Scholar
  77. 77.
    Forbes AJ, Spradling AC, Ingham PW, Lin H: The role of segment polarity genes during early oogenesis in Drosophila. Development 122: 3283–3294, 1996Google Scholar
  78. 78.
    Riddle RD, Johnson RL, Laufer E, Tabin C: Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75: 1401–1416, 1993Google Scholar
  79. 79.
    Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP: Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75: 1417–1430, 1993Google Scholar
  80. 80.
    Krauss S, Concordet J-P, Ingham PW: A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75: 1431–1444, 1993Google Scholar
  81. 81.
    Hynes M, Porter JA, Chiang C, Chang D, Tessier-Lavigne M, Beachy PA, Rosenthal A: Induction of midbrain dopaminergic neurons by Sonic hedgehog. Neuron 15: 35–44, 1995Google Scholar
  82. 82.
    Ekker SC, Ungar AR, Greenstein P, von Kessler DP, Porter JA, Moon RT, Beachy PA: Patterning activities of vertebrate hedgehog proteins in the developing eye and brain. Curr Biol 5: 944–955, 1995Google Scholar
  83. 83.
    Wechsler-Reya RJ, Scott MP: Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22: 103–114, 1999Google Scholar
  84. 84.
    Dutton R, Yamada T, Turnley A, Bartlett PF, Murphy M: Sonic hedgehog promotes neuronal differentiation of murine spinal cord precursors and collaborates with neurotrophin 3 to induce Islet-1. J Neurosci 19: 2601–2608, 1999Google Scholar
  85. 85.
    Iseki S, Araga A, Ohuchi H, Nohno T, Yoshioka H, Hayashi F, Noji S: Sonic hedgehog is expressed in epithelial cells during development of whisker, hair and tooth. Biochem Biophys Res Commun 218: 688–693, 1996Google Scholar
  86. 86.
    Hardcastle Z, Mo R, Hui C-C, Sharpe PT: The Shh signalling pathway in tooth development: defects in Gli2 and Gli3 mutants. Development 125: 2803–2811, 1998Google Scholar
  87. 87.
    Currie PD, Ingham PW: Induction of a specific muscle cell type by a hedgehog-like protein in zebrafish. Nature 382: 452–455, 1996Google Scholar
  88. 88.
    Duprez D, Fournier-Thibault C, Douarin NL: Sonic Hedgehog induces proliferation of committed skeletal muscle cells in the chick limb. Development 125: 494–505, 1998Google Scholar
  89. 89.
    Helms JA, Kim CH, Hu D, Minkoff R, Thaller C, Eichele G: Sonic hedgehog participates in craniofacial morphogenesis and is down-regulated by teratogenic doses of retinoic acid. Dev Biol 187: 25–35, 1997Google Scholar
  90. 90.
    Apelqvist A, Ahlgren U, Edlund H: Sonic hedgehog directs specialised mesoderm differentiation in the intestine and pancreas. Curr Biol 7: 801–804, 1997Google Scholar
  91. 91.
    Litingtung Y, Lei L, Westphal H, Chiang C: Sonic hedgehog is essential to foregut development. Nat Genet 20: 58–61, 1998Google Scholar
  92. 92.
    Motoyama J, Liu J, Mo R, Ding Q, Post M, Hui CC: Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus. Nat Genet 20: 54–57, 1998Google Scholar
  93. 93.
    Bellusci S, Furuta Y, Rush MG, Henderson R, Winnier G, Hogan BL: Involvement of Sonic hedgehog (Shh) in mouse embryonic lung growth and morphogenesis. Development 124: 53–63, 1997Google Scholar
  94. 94.
    Pepicelli CV, Lewis PM, McMahon AP: Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol 8: 1083–1086, 1998Google Scholar
  95. 95.
    Murtaugh LC, Chyung JH, Lassar AB: Sonic hedgehog promotes somitic chondrogenesis by altering the cellular response to BMP signaling. Genes Dev 13: 225–237, 1999Google Scholar
  96. 96.
    Hall JM, Hooper JE, Finger TE: Expression of sonic hedgehog, patched, and Glil in developing taste papillae of the mouse. J Comp Neurol 406: 143–155, 1999Google Scholar
  97. 97.
    St-Jacques B, Dassule HR, Karavanova I, Botchkarev VA, Li J, Danielian PS, McMahon JA, Lewis PM, Paus R, McMahon AP: Sonic hedgehog signaling is essential for hair development. Curr Biol 8: 1058–1068, 1998Google Scholar
  98. 98.
    Chiang C, Swan RZ, Grachtchouk M, Bolinger M, Litingtung Y, Robertson EK, Cooper MK, Gaffield W, Westphal H, Beachy PA, Dlugosz AA: Essential role for Sonic hedgehog during hair follicle morphogenesis. Dev Biol 205: 1–9, 1999Google Scholar
  99. 99.
    Bitgood MJ, McMahon AP: Hedgehog and Bmp genes are co-expressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev Biol 172: 126–138, 1995Google Scholar
  100. 100.
    Bitgood MJ, Shen L, McMahon AP: Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr Biol 6: 298–304, 1996Google Scholar
  101. 101.
    Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ: Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273: 613–622, 1996Google Scholar
  102. 102.
    Chang DT, Lopez A, von Kessler DP, Chiang C, Simandl BK, Zhao R, Seldin MF, Fallon JF, Beachy PA: Products, genetic linkage and limb patterning activity of a murine hedgehog gene. Development 120: 3339–3353, 1994Google Scholar
  103. 103.
    Roelink H, Ausberger A, Heemskerk J, Korzh V, Norlin S, Ruiz i Altaba A, Tanabe Y, Placzek M, Edlund T, Jessell TM, Dodd J: Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 76: 761–775, 1994Google Scholar
  104. 104.
    Niswander L, Jeffrey S, Martin GR, Tickle C: A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 371: 609–612, 1994Google Scholar
  105. 105.
    Laufer E, Nelson CE, Johnson RL, Morgan BA, Tabin C: Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79: 993–1003, 1994Google Scholar
  106. 106.
    Fan CM, Porter JA, Chiang C, Chang DT, Beachy PA, Tessier-Lavigne M: Long-range sclerotome induction by sonic hedgehog: direct role of the amino-terminal cleavage product and modulation by the cyclic AMP signaling pathway. Cell 81: 457–465, 1995Google Scholar
  107. 107.
    Marigo V, Scott MP, Johnson RL, Goodrich LV, Tabin CJ: Conservation in hedgehog signaling: induction of a chicken patched homolog by sonic hedgehog in the developing limb. Development 122: 1225–1233, 1996Google Scholar
  108. 108.
    Lopez-Martinez A, Chang DT, Chiang C, Porter JA, Ros MA, Simandl BK, Beachy PA, Fallon JF: Limb-patterning activity and restricted posterior localization of the amino-terminal product of Sonic hedgehog cleavage. Curr Biol 5: 791–796, 1995Google Scholar
  109. 109.
    Marti E, Takada R, Bumcrot DA, Sasaki H, McMahon AP: Distribution of Sonic hedgehog peptides in the developing chick and mouse embryo. Development 121: 2537–2547, 1995Google Scholar
  110. 110.
    Yang Y, Drossopoulou G, Chuang PT, Duprez D, Marti E, Bumcrot D, Vargesson N, Clarke J, Niswander L, McMahon A, Tickle C: Relationship between dose, distance and time in Sonic Hedgehog-mediated regulation of anteroposterior polarity in the chick limb. Development 124: 4393–4404, 1997Google Scholar
  111. 111.
    Goodrich LV, Johnson RL, Milenkovic L, McMahon JA, Scott MP: Conservation of the hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by Hedgehog. Genes Dev 10: 301–312, 1996Google Scholar
  112. 112.
    Motoyama J, Takabatake T, Takeshima K, Hui C-C: Ptch2, a second mouse patched gene is co-expressed with Sonic Hedgehog. Nat Genet 18: 104–106, 1998Google Scholar
  113. 113.
    Stone DM, Hynes M, Armanini M, Swanson TA, Gu Q, Johnson RL, Scott MP, Pennica D, Goddard A, Phillips H, Noll M, Hooper JE, de Sauvage F, Rosenthal A: The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 384: 129–134, 1996Google Scholar
  114. 114.
    Akiyama H, Shigeno C, Hiraki Y, Shukunami C, Kohno H, Akagi M, Konishi J, Nakamura T: Cloning of a mouse smoothened cDNA and expression pattern of hedgehog signalling molecules during chondrogenesis and cartilage differentiation in clonal mouse EC cells, ATDC5. Biochem Biophys Res Commun 235: 142–147, 1997Google Scholar
  115. 115.
    Kinzler KW, Bigner SH, Bigner DD, Trent JM, Law ML, O'Brien SJ, Wong AJ, Vogelstein B: Identification of an amplified, highly expressed gene in a human glioma. Science 236: 70–73, 1987Google Scholar
  116. 116.
    Walterhouse D, Ahmed M, Slusarski J, Kalamaras J, Boucher D, Holmgren R, Iaanaccone P: gli, a zinc-finger transcription factor and oncogene, is expressed during normal mouse development. Dev Dyn 196: 91–102, 1993Google Scholar
  117. 117.
    Hui C-C, Slusarski D, Platt KA, Holmgren R, Joyner AL: Expression of three mouse homologs of the Drosophila segment polarity gene cubitus interruptus, Gli, Gli-2 and Gli-3, in ectoderm and mesoderm-derived tissues suggests multiple roles during postimplantation development. Dev Biol 162: 402–413, 1994Google Scholar
  118. 118.
    Marigo V, Roberts DJ, Lee SM, Tsukurov O, Levi T, Gastier JM, Epstein DJ, Gilbert DJ, Copeland NG, Seidman CE, McMahon AP, Tabin C: Cloning, expression, and chromosomal location of SHH and IHH: two human homologues of the Drosophila segment polarity gene hedgehog. Genomics 28: 44–51, 1995Google Scholar
  119. 119.
    Belloni E, Muenke M, Roessler E, Traverso G, Siegel-Bartelt J, Frumkin A, Mitchell HF, Donis-Keller H, Helms C, Hing AV, Heng HHQ, Koop B, Martindale D, Rommens JM, Tsui L-C, Scherer SW: Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly. Nat Genet 14: 353–356, 1996Google Scholar
  120. 120.
    Roessler E, Belloni E, Gaudenz K, Jay P, Berta P, Scherer SW, Tsui L-C, Muenke M: Mutations in the human Sonic hedgehog gene cause holoprosencephaly. Nat Genet 14: 357–360, 1996Google Scholar
  121. 121.
    Roessler E, Ward DE, Gaudenz K, Belloni E, Scherer SW, Donnai D, Siegel-Bartelt J, Tsui LC, Muenke M: Cytogenetic rearrangements involving the loss of the Sonic Hedgehog gene at 7q36 cause holoprosencephaly. Hum Genet 100: 172–181, 1997Google Scholar
  122. 122.
    Roessler E, Belloni E, Gaudenz K, Vargas F, Scherer SW, Tsui LC, Muenke M: Mutations in the C-terminal domain of Sonic Hedgehog cause holoprosencephaly. Hum Mol Genet 6: 1847–1853, 1997Google Scholar
  123. 123.
    Hahn H, Christiansen J, Wicking C, Zaphiropoulos PG, Chidambaram A, Gerrard B, Vorechovsky I, Bale AE, Toftgard R, Dean M, Wainwright B: A mammalian patched homolog is expressed in target tissues and maps to a region associated with developmental abnormalities. J Biol Chem 271: 12125–12128, 1996Google Scholar
  124. 124.
    Carpenter D, Stone DM, Brush J, Ryan A, Armanini M, Frantz G, Rosenthal A, de Sauvage FJ: Characterization of two patched receptors for the vertebrate hedgehog protein family. Proc Natl Acad Sci USA 95: 13630–13634, 1998Google Scholar
  125. 125.
    Smyth I, Narang MA, Evans T, Heimann C, Nakamura Y, Chenevix-Trench G, Pietsch T, Wicking C, Wainwright BJ: Isolation and characterization of human Patched 2 (PTCH2), a putative tumour suppressor gene in basal cell carcinoma and medulloblastoma on chromosome 1p32. Hum Mol Genet 8: 291–297, 1999Google Scholar
  126. 126.
    Zaphiropoulos PG, Unden AB, Rahnama F, Hollingsworth RE, Toftgard R: PTCH2, a novel human patched gene, undergoing alternative splicing and up-regulated in basal cell carcinomas. Cancer Res 59: 787–792, 1999Google Scholar
  127. 127.
    Lee JJ, Ekker SC, von Kessler DP, Porter JA, Sun BI, Beachy PA: Autoproteolysis in hedgehog protein biogenesis. Science 266: 1528–1537, 1994Google Scholar
  128. 128.
    Fietz MJ, Jacinto A, Taylor AM, Alexandre C, Ingham PW: Secretion of the ammo-terminal fragment of the hedgehog protein is necessary and sufficient for hedgehog signalling in Drosophila. Curr Biol 5: 643–650, 1995Google Scholar
  129. 129.
    Porter JA, von Kessler DP, Ekker SC, Young KE, Lee JJ, Moses K, Beachy PA: The product of hedgehog autoproteolytic cleavage active in local and long-range signalling. Nature 374: 363–366, 1995Google Scholar
  130. 130.
    Hall TM, Porter JA, Young KE, Koonin EV, Beachy PA, Leahy DJ: Crystal structure of a hedgehog autoprocessing domain: homology between hedgehog and self-splicing proteins. Cell 91: 85–97, 1997Google Scholar
  131. 131.
    Bumcrot DA, Takada R, McMahon AP: Proteolytic processing yields two secreted forms of Sonic hedgehog. Mol Cell Biol 15: 2294–2303, 1995Google Scholar
  132. 132.
    Roelink H, Porter JA, Chiang C, Tanabe Y, Chang DT, Beachy PA, Jessell TM: Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell 81: 445–455, 1995Google Scholar
  133. 133.
    Marti E, Bumcrot DA, Takada R, McMahon AP: Requirement of 19K form of Sonic hedgehog for induction of distinct ventral cell types in CNS explants. Nature 375: 322–325, 1995Google Scholar
  134. 134.
    Porter JA, Ekker SC, Park W-J, von Kessler DP, Young KE, Chen C-H, Ma Y, Woods AS, Cotter RJ, Koonin EV, Beachy PA: Hedgehog patterning activity: role of a lipophilic modification mediated by the carboxy-terminal autoprocessing domain. Cell 86: 21–34, 1996Google Scholar
  135. 135.
    Porter JA, Young KE, Beachy PA: Cholesterol modification of hedgehog signaling proteins in animal development. Science 274: 255–259, 1996Google Scholar
  136. 136.
    Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA: Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383: 407–413, 1996Google Scholar
  137. 137.
    Roux C, Horvath C, Dupuis R: Teratogenic action and embryo lethality of AY 994R. Prevention by a hypercholesterolemia-producing diet. Teratology 19: 35–38, 1979Google Scholar
  138. 138.
    Opitz JM: RSH/SLO ('smith-Lemli-Opitz') syndrome: historical, genetic and developmental considerations. Am J Med Genet 50: 344–346, 1994Google Scholar
  139. 139.
    Salen G, Shefer S, Batta AK, Tint GS, Xu G, Honda A, Irons M, Elian ER: Abnormal cholesterol biosynthesis in the Smith-Lemli-Opitz syndrome. J Lipid Res 37: 1169–1180, 1996Google Scholar
  140. 140.
    Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C, Gu J, Rosenfeld MA, Pavan WJ, Krizman DB, Nagle J, Polymeropouios MH, Sturley SL, Ionnou YA, Higgins ME, Comly M, Cooney A, Brown A, Kaneski CR, Blanchette-Mackie EJ, Dwyer NK, Neufeld EB, Chang T-Y, Liscum L, Strauss III JF, Ohno K, Zeigler M, Carmi R, Sokol J, Markie D, O'Neill RR, van Diggelen OP, Elleder M, Patterson MC, Brady RO, Vanier MT, Pentchev PG, Tagle DA: Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277: 228–231, 1997Google Scholar
  141. 141.
    Loftus SK, Morris JA, Carstea ED, Gu JZ, Cummings C, Brown A, Ellison J, Ohno K, Rosenfeld MA, Tagle DA, Pentchev PG, Pavan WJ: Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene. Science 277: 232–235, 1997Google Scholar
  142. 142.
    Pepinsky RB, Zeng C, Wen D, Rayhorn P, Baker DP, Williams KP, Bixler SA, Ambrose CM, Garber EA, Miatkowski K, Taylor FR, Wang EA, Galdes A: Identification of a palmitic acid-modified form of human Sonic hedgehog. J Biol Chem 273: 14037–14045, 1998Google Scholar
  143. 143.
    Nakano Y, Guerrero I, Hidalgo A, Taylor A, Whittle JRS, Ingham PW: A protein with several membrane spanning domains encoded by the Drosophila segment polarity gene patched. Nature 341: 508–513, 1989Google Scholar
  144. 144.
    Hooper JE, Scott MP: The Drosophila patched gene encodes a putative membrane protein required for segmental patterning. Cell 59: 751–765, 1989Google Scholar
  145. 145.
    Schuske K, Hooper JE, Scott MP: Patched overexpression causes loss of wingless expression in Drosophila embryos. Dev Biol 164: 300–311, 1994Google Scholar
  146. 146.
    Taylor AM, Nakano Y, Mohler J, Ingham PW: Contrasting distributions of patched and hedgehog proteins in the Drosophila embryo. Mech Dev 42: 89–96, 1993Google Scholar
  147. 147.
    Strader CD, Fong TM, Tota MR, Underwood D, Dixon RA: Structure and function of G protein-coupled receptors. Annu Rev Biochem 63: 101–132, 1994Google Scholar
  148. 148.
    Adler PN, Vinson C, Park WJ, Conover S, Klein L: Molecular structure of frizzled, a Drosophila tissue polarity gene. Genetics 126: 401–416, 1990Google Scholar
  149. 149.
    Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP, Andrew D, Nathans J, Nusse R: A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382: 225–230, 1996Google Scholar
  150. 150.
    Marigo V, Davey RA, Zuo Y, Cunningham JM, Tabin CJ: Biochemical evidence that patched is the hedgehog receptor. Nature 384: 176–179, 1996Google Scholar
  151. 151.
    Murone M, Rosenthal A, de Sauvage FJ: Sonic hedgehog signaling by the Patched-Smoothened receptor complex. Curr Biol 9: 76–84, 1999Google Scholar
  152. 152.
    Chen Y, Struhl G: Dual roles for patched in sequestering and transducing hedgehog. Cell 87: 553–563, 1996Google Scholar
  153. 153.
    Takabatake T, Ogawa M, Takahashi TC, Mizuno M, Okamoto M, Takeshima K: Hedgehog and patched gene expression in adult ocular tissues. FEBS Lett 410: 485–489, 1997Google Scholar
  154. 154.
    Motoyama J, Heng H, Crackower MA, Takabatake K, Takeshima K, Tsui L-C, Hui C-C: Overlapping and non-overlapping Ptch2 expression with Shh during mouse embryogenesis. Mech Dev 78: 81–84, 1998Google Scholar
  155. 155.
    Brown RS: The primary structure of transcription factor TFIIIA has 12 consecutive repeats. FEBS Lett 186: 271–274, 1985Google Scholar
  156. 156.
    Wieschaus E, Nusslein-Volhard C, Kluding H: Kruppel, a gene whose activity is required early in the zygotic genome for normal embryonic segmentation. Dev Biol 104: 172–186, 1984Google Scholar
  157. 157.
    Kinzler KW, Ruppert JM, Bigner SH, Vogelstein B: The GLI gene is a member of the Kruppel family of zinc finger proteins. Nature 332: 371–374, 1988Google Scholar
  158. 158.
    Ruppert JM, Kinzler KW, Wong AJ, Bigner SH, Kao FT, Law ML, Seuanez HN, O'Brien SJ, Vogelstein B: The GLI-Kruppel family of human genes. Mol Cell Biol 8: 3104–3113, 1988Google Scholar
  159. 159.
    Kinzler KW, Vogelstein B: The GLI gene encodes a nuclear protein which binds specific sequences in the human genome. Mol Cell Biol 10: 634–642, 1990Google Scholar
  160. 160.
    Pavletich NP, Pabo CO: Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. Science 261: 1701–1707, 1993Google Scholar
  161. 161.
    Orenic TV, Slusarski DC, Kroll KL, Holmgren RA: Cloning and characterization of the segment polarity gene cubitus interruptus Dominant of Drosophila. Genes Dev 4: 1053–1067, 1990Google Scholar
  162. 162.
    Schweizer L, Basler K: Drosophila ciD encodes a hybrid Pangolin/Cubitus interruptus protein that diverts the Wingless into the Hedgehog signalling pathway. Mech Dev 78: 141–151, 1998Google Scholar
  163. 163.
    von Ohlen T, Hooper JE: The CiD mutation encodes a chimeric protein whose activity is regulated by wingless signalling. Dev Biol 208: 147–156, 1999Google Scholar
  164. 164.
    Slusarski DC, Motzny CK, Holmgren R: Mutations that alter the timing and pattern of cubitus interruptus gene expression in Drosophila melanogaster. Genetics 139: 229–240, 1995Google Scholar
  165. 165.
    von Ohlen T, Lessing D, Nusse R, Hooper JE: Hedgehog signaling regulates transcription through cubitus interruptus, a sequence-specific DNA binding protein. Proc Natl Acad Sci USA 94: 2404–2409, 1997Google Scholar
  166. 166.
    Dominguez M, Brunner M, Hafen E, Basler K: Sending and receiving the hedgehog signal: control by the Drosophila Gli protein Cubitus interruptus. Science 272: 1621–1625, 1996Google Scholar
  167. 167.
    Alexandre C, Jacinto A, Ingham PW: Transcriptional activation of hedgehog target genes in Drosophila is mediated directly by the cubitus interruptus protein, a member of the GLI family of zinc finger DNA-binding proteins. Genes Dev 10: 2003–2013, 1996Google Scholar
  168. 168.
    Hepker J, Wang QT, Motzny CK, Holmgren R, Orenic TV: Drosophila cubitus interruptus forms a negative feedback loop with patched and regulates expression of hedgehog target genes. Development 124: 549–558, 1997Google Scholar
  169. 169.
    von Ohlen T, Hooper JE: Hedgehog signaling regulates transcription through Gli/Ci binding sites in the wingless enhancer. Mech Dev 68: 149–156, 1997Google Scholar
  170. 170.
    Aza-Blanc P, Ramirez-Weber FA, Laget MP, Schwartz C, Kornberg TB: Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor. Cell 89: 1043–1053, 1997Google Scholar
  171. 171.
    Akimaru H, Chen Y, Dai P, Hou DX, Nonaka M, Smolik SM, Armstrong S, Goodman RH, Ishii S: Drosophila CBP is a co-activator of cubitus interruptus in hedgehog signalling. Nature 386: 735–738, 1997Google Scholar
  172. 172.
    Mariol MC, Preat T, Limbourg-Bouchon B: Molecular cloning of fused, a gene required for normal segmentation in the Drosophila melanogaster embryo. Mol Cell Biol 7: 3244–3251, 1987Google Scholar
  173. 173.
    Preat T, Therond P, Lamour-Isnard C, Limbourg-Bouchon B, Tricoire H, Erk I, Mariol MC, Busson D: A putative serine/threonine protein kinase encoded by the segment-polarity fused gene of Drosophila. Nature 347: 87–89, 1990Google Scholar
  174. 174.
    Therond P, Busson D, Guillemet E, Limbourg-Bouchon B, Preat T, Terracol R, Tricoire H, Lamour-Isnard C: Molecular organisation and expression pattern of the segment polarity gene fused of Drosophila melanogaster. Mech Dev 44: 65–80, 1993Google Scholar
  175. 175.
    Therond P, Alves G, Limbourg-Bouchon B, Tricoire H, Guillemet E, Brissard-Zahraoui J, Lamour-Isnard C, Busson D: Functional domains of fused, a serine-threonine kinase required for signaling in Drosophila. Genetics 142: 1181–1198, 1996Google Scholar
  176. 176.
    Therond PP, Knoght JD, Kornberg TB, Bishop JM: Phosphorylation of the fused protein kinase in response to signaling from hedgehog. Proc Natl Acad Sci USA 93: 4224–4228, 1996Google Scholar
  177. 177.
    Preat T: Characterization of Suppresssor of fused, a complete suppressor of the fused segment polarity gene of Drosophila melanogaster. Genetics 132: 725–736, 1992Google Scholar
  178. 178.
    Pham A, Therond P, Alves G, Tournier FB, Busson D, Lamour-Isnard C, Bouchon BL, Preat T, Tricoire H: The Suppressor of fused gene encodes a novel PEST protein involved in Drosophila segment polarity establishment. Genetics 140: 587–598, 1995Google Scholar
  179. 179.
    Rogers S, Wells R, Rechsteiner M: Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234: 364–368, 1986Google Scholar
  180. 180.
    Preat T, Therond P, Limbourg-Bouchon B, Pham A, Tricoire H, Busson D, Lamour-Isnard C: Segmental polarity in Drosophila melanogaster: genetic dissection of fused in a Suppressor of fused background reveals interaction with costal-2. Genetics 135: 1047–1062, 1993Google Scholar
  181. 181.
    Grau Y, Simpson P: The segment polarity gene costal-2 in Drosophila. I. The organization of both primary and secondary embryonic fields may be affected Dev Biol 122: 186–200, 1987Google Scholar
  182. 182.
    Sisson JC, Ho KS, Suyama K, Scott MP: Costal2, a novel kinesin-related protein in the hedgehog signaling pathway. Cell 90: 235–245, 1997Google Scholar
  183. 183.
    Robbins DJ, Nybakken KE, Kobayashi R, Sisson JC, Bishop JM, Therond PP: Hedgehog elicits signal transduction by means of a large complex containing the kinesin-related protein costal2. Cell 90: 225–234, 1997Google Scholar
  184. 184.
    Monnier V, Dussillol F, Alves G, Lamour-Isnard C, Plessis A: Suppressor of fused links Fused and Cubitus interruptus on the Hedgehog signalling pathway. Curr Biol 8: 583–586, 1998Google Scholar
  185. 185.
    Lepage T, Cohen SM, Diaz-Benjumea FJ, Parkhurst SM: Signal transduction by cAMP-dependent protein kinase A in Drosophila limb patterning. Nature 373: 711–715, 1995Google Scholar
  186. 186.
    Pan D, Rubin GM: cAMP-dependent protein kinase and hedgehog act antagonistically in regulating decapentaplegic transcription in Drosophila imaginal discs. Cell 80: 543–552, 1995Google Scholar
  187. 187.
    Li W, Ohlmeyer JT, Lane ME, Kalderon D: Function of protein kinase A in hedgehog signal transduction and Drosophila imaginal disc development. Cell 80: 553–562, 1995Google Scholar
  188. 188.
    Jiang J, Struhl G: Protein kinase A and hedgehog signaling in Drosophila limb development. Cell 80: 563–572, 1995Google Scholar
  189. 189.
    Ungar AR, Moon RT: Inhibition of protein kinase A phenocopies ectopic expression of hedgehog in the CNS of wildtype and cyclops mutant embryos. Dev Biol 178: 186–191, 1996Google Scholar
  190. 190.
    Epstein DJ, Marti E, Scott MP, McMahon AP: Antagonizing cAMP-dependent protein kinase A in the dorsal CNS activates a conserved Sonic hedgehog signaling pathway. Development 122: 2885–2894, 1996Google Scholar
  191. 191.
    Chen Y, Gallaher N, Goodman RH, Smolik SM: Protein kinase A directly regulates the activity and proteolysis of cubitus interruptus. Proc Natl Acad Sci USA 95: 2349–2354, 1998Google Scholar
  192. 192.
    Jiang J, Struhl G: Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391: 493–496, 1998Google Scholar
  193. 193.
    Sanchez-Herrero E, Couso JP, Capdevila J, Guerrero I: The fu gene discriminates between pathways to control dpp expression in Drosophila imaginal discs. Mech Dev 55: 159–170, 1996Google Scholar
  194. 194.
    Ohlmeyer JT, Kalderon D: Dual pathways for induction of wingless expression by protein kinase A and Hedgehog in Drosophila embryos. Genes Dev 11: 2250–2258, 1997Google Scholar
  195. 195.
    Lessing D, Nusse R: Expression of wingless in the Drosophila embryo: a conserved cis-acting element lacking conserved Ci-binding sites is required for patched mediated repression. Development 125: 1469–1476, 1998Google Scholar
  196. 196.
    Ohlmeyer JT, Kalderon D: Hedgehog stimulates maturation of Cubitus interruptus into a labile transcriptional activator. Nature 396: 749–753, 1998Google Scholar
  197. 197.
    Alves G, Limbourg-Bouchon B, Tricoire H, Brissard-Zahraoiu J, Lamour-Isnard C, Busson D: Modulation of Hedgehog target gene expression by the Fused serine-threonine kinase in wing imaginal discs. Mech Dev 78: 17–31, 1998Google Scholar
  198. 198.
    Methot N, Basler K: Hedgehog controls limb development by regulating the activities of distinct transcriptional activator and repressor forms of cubitus interruptus. Cell 96: 819–831, 1999Google Scholar
  199. 199.
    Ruppert JM, Vogelstein B, Arheden K, Kinzler KW: GLI3 encodes a 190-kilodalton protein with multiple regions of GLI similarity. Mol Cell Biol 10: 5408–5415, 1990Google Scholar
  200. 200.
    Vortkamp A, Gessler M, Grzeschik KH: Identification of optimized target sequences for the GLI3 zinc finger protein. DNA Cell Biol 14: 629–634, 1995Google Scholar
  201. 201.
    Thien H, Buscher D, Ruther U: Cloning and sequence analysis of the murine Gli3 cDNA. Biochim Biophys Acta 1307: 267–269, 1996Google Scholar
  202. 202.
    Vortkamp A, Gessler M, Grzeschik KH: GLI3 zinc-finger gene interrupted by translocations in Greig syndrome families. Nature 352: 539–540, 1991Google Scholar
  203. 203.
    Wild A, Kalff-Suske M, Vortkamp A, Bornholdt D, Konig R, Grzeschik KH: Point mutations in human GLI3 cause Greig syndrome. Hum Mol Gen 6: 1979–1984, 1997Google Scholar
  204. 204.
    Kang S, Graham Jr JM, Olney AH, Biesecker LG: GLI frameshift mutations cause autosomal dominant Pallister-Hall syndrome. Nat Genet 15:266–268, 1997Google Scholar
  205. 205.
    Radhakrishna U, Wild A, Grzeschik KH, Antonarakis SE: Mutation in GLI3 in postaxial polydactyly type A. Nat Genet 17: 269–271, 1997Google Scholar
  206. 206.
    Vortkamp A, Franz T, Gessler M, Grzeschik KH: Deletion of GLI3 supports the homology of the human Greig cephalopolysyndactyly syndrome (GCPS) and the mouse mutant extra toes. Mamm Genome 3: 461–463, 1992Google Scholar
  207. 207.
    Hui C-C, Joyner AL: A mouse model of greig cephalopolysyndactyly syndrome: the extra-toesJ mutation contains an intragenic deletion of the Gli2 gene. Nat Genet 3: 241–246, 1993Google Scholar
  208. 208.
    Schimmang T, Lemaistre M, Vortkamp A, Ruther U: Expression of the zinc finger gene Gli3 is affected in the morphogenetics mouse mutant extra-toes (Xt). Development 116: 799–804, 1992Google Scholar
  209. 209.
    Platt KA, Michaud J, Joyner AL: Expression of the mouse Gli and Ptc genes is adjacent to embryonic sources of hedgehog signals suggesting a conservation of pathways between flies and mice. Mech Dev 62: 121–135, 1997Google Scholar
  210. 210.
    Marigo V, Johnson R, Vortkamp A, Tabin CJ: Sonic hedgehog differentially regulates expression of GLI and GLI3 during limb development. Dev Biol 180: 273–283, 1996Google Scholar
  211. 211.
    Buscher D, Bosse B, Heymer J, Ruther U: Evidence for genetic control of Sonic hedgehog by Gli3 in mouse limb development. Mech Dev 62: 175–182, 1997Google Scholar
  212. 212.
    Masuya H, Sagai T, Wakana S, Moriwaki K, Shiroishi T: A duplicated zone of polarizing activity in polydactylous mouse mutants. Genes Dev 9: 1645–1653, 1995Google Scholar
  213. 213.
    Sharpe J, Lettice L, Hecksher-Sorensen J, Fox M, Hill R, Krumlauf R: Identification of Sonic Hedgehog as a candidate gene responsible for the polydactylous mouse mutant Sasquatch. Curr Biol 9: 97–100, 1999Google Scholar
  214. 214.
    Matsumoto N, Fujimoto M, Kato R, Niikawa N: Assignment of the human GLI2 gene to 2ql4 by fluorescence in situ hybridisation. Genomics 36: 220–221, 1996Google Scholar
  215. 215.
    Hughes DC, Allen J, Morely G, Sutherland K, Ahmed W, Prosser J, Lettice L, Allan G, Mattei MG, Farall M, Hill RE: Cloning and sequencing of the mouse Gli2 gene: localization to the Dominant hemimelia critical region. Genomics 39: 205–215, 1997Google Scholar
  216. 216.
    Mo R, Freer AM, Zinyk DL, Crackower MA, Michaud J, Heng HH, Chik KW, Shi XM, Tsui LC, Cheng SH, Joyner AL, Hui C: Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. Development 124: 113–123, 1997Google Scholar
  217. 217.
    Buscher D, Ruther U: Expression profile of Gli family members and Shh in normal and mutant mouse limb development. Dev Dyn 211: 88–96, 1998Google Scholar
  218. 218.
    Sasaki H, Hui C, Nakafuku M, Kondoh H: A binding site for Gli proteins is essential for HNF-3beta floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development 124: 1313–1322, 1997Google Scholar
  219. 219.
    Hynes M, Stone DM, Dowd M, Pitts-Meek S, Goddard A, Gurney A, Rosenthal A: Control of cell pattern in the neural tube by the zinc finger transcription factor and oncogene Gli-1. Neuron 19: 15–26, 1997Google Scholar
  220. 220.
    Matise MP, Epstein DJ, Park HL, Platt KA, Joyner AL: Gli2 is required for induction of floor plate and adjacent cells, but not most ventral neurons in the mouse central nervous system. Development 125: 2759–2770, 1998Google Scholar
  221. 221.
    Ding Q, Motoyama J, Gasca S, Mo R, Sasaki H, Rossant J, Hui CC: Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice. Development 125: 2533–2543, 1998Google Scholar
  222. 222.
    Lee J, Platt KA, Censullo P, Ruiz i Altaba A: Glil is a target of sonic hedgehog that induces ventral neural tube development. Development 124: 2537–2552, 1997Google Scholar
  223. 223.
    i Altaba AR: Combinatorial Gli gene function in floor plate and neuronal inductions by Sonic hedgehog. Development 125: 2203–2212, 1998Google Scholar
  224. 224.
    Ruiz i Altaba A: Catching a Gli-mpse of hedgehog. Cell 90: 193–196, 1997Google Scholar
  225. 225.
    Biesecker LG: Strike three for GLI3. Nat Genet 17: 259–260, 1997Google Scholar
  226. 226.
    Shin SH, Kogerman P, Lindstrom E, Toftgard R, Biesecker LG: GLI3 mutations in human disorders mimic Drosophila Cubitus interruptus protein functions and localization. Proc Natl Acad Sci USA 96: 2880–2884, 1999Google Scholar
  227. 227.
    Dai P, Akimaru H, Tanaka Y, Maekawa T, Nakafuku M, Ishii S: Sonic hedgehog-induced activation of the Glil promoter is mediated by Gli3. J Biol Chem 274: 8143–8152, 1999Google Scholar
  228. 228.
    Yoon JW, Liu CZ, Yang JT, Swart R, Iannaccone P, Walterhouse D: GLI activates transcription through a herpes simplex viral protein 16-like activation domain. J Biol Chem 273: 3496–3501, 1998Google Scholar
  229. 229.
    Dunn NR, Winnier GE, Hargett LK, Schrick JJ, Fogo AB, Hogan BL: Haploinsufficient phenotypes in Bmp4 heterozygous null mice and modification by mutations in Gli3 and Alx4. Dev Biol 188: 235–247, 1997Google Scholar
  230. 230.
    Liu F, Massague J, Ruiz i Altaba A: Carboxy-terminally truncated Gli3 proteins associate with Smads. Nat Genet 20: 325–326, 1998Google Scholar
  231. 231.
    Krishnan V, Pereira FA, Qiu Y, Chen C-H, Beachy PA, Tsai SY, Tsai M-J: Mediation of Sonic hedgehog-induced expression of COUP-TFII by a protein phosphatase. Science 278: 1947–1950, 1997Google Scholar
  232. 232.
    Epps JL, Jones JB, Tanda S: Oroshingane, a new segment polarity gene of Drosophila melanogaster, functions in hedgehog signal transduction. Genetics 145: 1041–1052, 1997Google Scholar
  233. 233.
    Chuang P-T, McMahon AP: Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature 397: 617–621, 1999Google Scholar
  234. 234.
    Bellaiche Y, The I, Perrimon N: Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature 394: 85–88, 1998Google Scholar
  235. 235.
    Goodrich LV, Milenkovic L, Higgins KM, Scott MP: Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277: 1109–1113, 1997Google Scholar
  236. 236.
    Bonifas JM, Bare JW, Kershmann RL, Master SP, Epstein EH: Parental origin of chromosome 9q22.3-q31 lost in basal cell carcinomas from basal cell nevus syndrome patients. Hum Mol Genet 3: 447–448, 1994Google Scholar
  237. 237.
    Knudson Jr AG: Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68: 820–823, 1971Google Scholar
  238. 238.
    Wicking C, Shanley S, Smyth I, Gillies S, Negus K, Graham S, Suthers G, Haites N, Edwards M, Wainwright B, Chenevix-Trench G: Most germ-line mutations in the naevoid basal cell carcinoma syndrome lead to a premature termination of the PATCHED protein, and no genotype-phenotype correlations are evident. Am J Hum Genet 60: 21–26, 1997Google Scholar
  239. 239.
    Cowan R, Hoban P, Kelsey A, Birch JM, Gattamaneni R, Evans DG: The gene for the naevoid basal cell carcinoma syndrome acts as a tumour-suppressor gene in medulloblastoma. Br J Cancer 76: 141–145, 1997Google Scholar
  240. 240.
    Chidambaram A, Goldstein AM, Gailani MR, Gerrard B, Bale SJ, DiGiovanna JJ, Bale AE, Dean M: Mutations in the human homologue of the Drosophila patched gene in Caucasian and African-American nevoid basal cell carcinoma syndrome patients. Cancer Res 56: 4599–4601, 1996Google Scholar
  241. 241.
    Unden AB, Holmberg E, Lundh-Rozell B, Stahle-Backdahl M, Zaphiropoulos PG, Toftgard R, Vorechovsky I: Mutations in the human homologue of Drosophila patched (PTCH) in basal cell carcinomas and the Gorlin syndrome: Different in vivo mechanisms of PTCH inactivation. Cancer Res 56: 4562–4565, 1996Google Scholar
  242. 242.
    Lench NJ, Telford EAR, High AS, Markham AF, Wicking C, Wainwright BJ: Characterisation of human patched germ line mutations in naevoid basal cell carcinoma syndrome. Hum Genet 100: 497–502, 1997Google Scholar
  243. 243.
    Wicking C, Gillies S, Smyth I, Shanley S, Fowles L, Ratcliffe J, Wainwright B, Chenevix-Trench G: De novo mutations of the patched gene in naevoid basal cell carcinoma syndrome help to define the clinical phenotype. Am J Med Genet 73: 304–307, 1997Google Scholar
  244. 244.
    Aszterbaum M, Rothman A, Johnson RL, Fisher M, Xie J, Bonifas JM, Zhang X, Scott MP, Epstein Jr EH: Identification of mutations in the human patched gene in sporadic basal cell carcinomas and in patients with the basal cell nevus syndrome. J Invest Dermatol 110: 885–888, 1998Google Scholar
  245. 245.
    Hasenpuch-Theil K, Bataille V, Laehdetie J, Obermayr F, Sampson JR, Frischauf AM: Gorlin syndrome: identification of 4 novel germ-line mutations of the human patched (PTCH) gene. Mutations in brief no. 137. Online. Hum Mutat 11: 480, 1998Google Scholar
  246. 246.
    Gailani MR, Stahle-Backdahl M, Leffell DJ, Glynn M, Zaphiropoulos PG, Pressman C, Unden AB, Dean M, Brash DE, Bale AE, Toftgard R: The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat Genet 14: 78–81, 1996Google Scholar
  247. 247.
    Wolter M, Reifenderger J, Sommer C, Ruzicka T, Reifenberger G: Mutations in the human homologue of the Drosophila segment polarity gene patched (PTCH) in sporadic basal cell carcinomas of the skin and primitive neurectodermal tumours of the central nervous system. Cancer Res 57: 2581–2585, 1997Google Scholar
  248. 248.
    Jin Y, Mertens F, Persson B, Gullestad HP, Jin C, Warloe T, Salemark L, Jonsson N, Risberg B, Mandahl N, Mitelman F, Heim S: The reciprocal translocation t(9;16)(q22;p13) is a primary chromosome abnormality in basal cell carcinomas. Cancer Res 57: 404–406, 1997Google Scholar
  249. 249.
    Glynn MW, Gailani MR, Lefell DJ, Bale AE: Patched mutations affecting the hedgehog binding domain enhance basal carcinoma growth. Am J Hum Genet 61(4SS): 356, 1997Google Scholar
  250. 250.
    Shen T, Park WS, Boni R, Saini N, Pham T, Lash AE, Vortmeyer AO, Zhuang Z: Detection of loss of heterozygosity on chromosome 9q22.3 in microdissected sporadic basal cell carcinoma. Hum Pathol 30: 284–287, 1999Google Scholar
  251. 251.
    Raffel C, Jenkins RB, Frederick L, Hebrink D, Alderete B, Fults DW, James CD: Sporadic medulloblastomas contain PTCH mutations. Cancer Res 57: 842–845, 1997Google Scholar
  252. 252.
    Xie J, Johnson RL, Zhang X, Bare JW, Waldman FM, Cogen PH, Menon AG, Warren RS, Chen L-C, Scott MP, Epstein Jr EH: Mutations of the PATCHED gene in several types of extracutaneous tumors. Cancer Res 57: 2369–2372, 1997Google Scholar
  253. 253.
    Vorechovsky I, Tingby O, Hartman M, Stromberg B, Nister M, Collins VP, Toftgard R: Somatic mutations in the human homologue of Drosophila patched in primitive neurectodermal tumours. Oncogene 15: 361–366, 1997Google Scholar
  254. 254.
    Pietsch T, Waha A, Koch A, Kraus J, Albrecht S, Tonn J, Sorensen N, Berthold F, Henk B, Schmandt N, Wolf HK, Deimling AV, Wainwright B, Chenevix-Trench G, Wiestler OD, Wicking C: Medulloblastomas of the desmoplastic variant carry mutations of the human homologue of Drosophila patched. Cancer Res 57: 2085–2088, 1997Google Scholar
  255. 255.
    Vorechovsky I, Unden AB, Sandstedt B, Toftgard R, Stahle-Backdahl M: Trichoepitheliomas contain somatic mutations in the overexpressed PTCH gene: support for a gatekeeper mechanism in skin tumourigenesis. Cancer Res 57: 4677–4681, 1997Google Scholar
  256. 256.
    Maesawa C, Tamura G, Iwaya T, Ogasawara S, Ishida K, Sato N, Nishizuka S, Suzuki Y, Ikeda K, Aoki K, Saito K, Satodate R: Mutations of the human homologue of the Drosophila patched gene in esophageal squamous cell carcinoma. Genes Chromosomes Cancer 21: 276–279, 1998Google Scholar
  257. 257.
    McGarvey TW, Maruta Y, Tomaszewski JE, Linnenbach AJ, Malkowicz SB: PTCH gene mutations in invasive transitional carcinoma of the bladder. Oncogene 17: 1167–1172, 1998Google Scholar
  258. 258.
    Unden AB, Zaphiropoulos PG, Bruce K, Toftgard R, Stahle-Backdahl M: Human patched (PTCH) mRNA is overexpressed consistently in tumor cells of both familial and sporadic basal cell carcinoma. Cancer Res 57: 2336–2340, 1997Google Scholar
  259. 259.
    Sidransky D: Is human patched the gatekeeper of common skin cancers? Nat Genet 14: 7–8, 1996Google Scholar
  260. 260.
    Kinzler KW, Vogelstein B: Lessons from hereditary colorectal cancer. Cell 87: 159–170, 1996Google Scholar
  261. 261.
    Oro AE, Higgins KM, Hu Z, Bonifas JM, Epstein Jr EH, Scott MP: Basal cell carcinomas in mice overexpressing sonic hedgehog. Science 276: 817–821, 1997Google Scholar
  262. 262.
    Fan H, Oro AE, Scott MP, Khavari PA: Induction of basal cell carcinoma features in transgenic human skin expressing Sonic Hedgehog. Nat Med 3: 788–792, 1997Google Scholar
  263. 263.
    Wicking C, Evans T, Henk B, Hayward N, Simms LA, Chenevix-Trench G, Pietsch T: No evidence for the H133Y mutations in SONIC HEDGEHOG in a collection of tumour types. Oncogene 16: 1091–1093, 1998Google Scholar
  264. 264.
    Xie J, Murone M, Luoh S-M, Ryan A, Gu Q, Zhang C, Bonifas JM, Lam CW, Hynes M, Goddard A, Rosenthal A, Epstein Jr EH, de Sauvage FJ: Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391: 90–92, 1998Google Scholar
  265. 265.
    Reifenberger J, Wolter M, Weber RG, Megahed M, Ruzicka T, Lichter P, Reifenberger G: Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neurectodermal tumours of the central nervous system. Cancer Res 58: 1798–1803, 1998Google Scholar
  266. 266.
    Lam C-W, Xie J, To K-F, Ng H-K, Lee K-C, Yuen N, Lim P-L, Chan LY-S, Tong S-F, McCormick F: A frequent activated smoothened mutation in sporadic basal cell carcinomas. Oncogene 18: 833–836, 1999Google Scholar
  267. 267.
    Kallassy M, Toftgard R, Ueda M, Nakazawa K, Vorechovsky I, Yamasaki H, Hakazawa H: Patched (ptch)-associated preferential expression of smoothened (smoh) in human basal carcinoma of the skin. Cancer Res 57: 4731–4735, 1997Google Scholar
  268. 268.
    Dahmane N, Lee J, Robins P, Heller P, Ruiz i Altaba A: Activation of the transcription factor Glil and the sonic hedgehog signalling pathway in skin tumours. Nature 389: 876–881, 1997Google Scholar
  269. 269.
    Green J, Leigh IM, Poulsom R, Quinn AG: Basal cell carcinoma development is associated with induction of the expression of the transcription factor Gli-1. Br J Dermatol 139: 911–915, 1998Google Scholar
  270. 270.
    Ruppert JM, Vogelstein B, Kinzler KW: The zinc finger protein GLI transforms primary cells in cooperation with adenovirus E1A. Mol Cell Biol 11: 1724–1728, 1991Google Scholar
  271. 271.
    Smyth I, Wicking C, Wainwright B, Chevenix-Trench G: The effects of splice site mutations in patients with naevoid basal cell carcinoma syndrome. Hum Genet 102: 598–601, 1998Google Scholar
  272. 272.
    Albert RE, Burns FJ, Heimbach RD: The effect of penetration depth of electron radiation on skin tumor formation in the rat. Radiat Res 30: 515–524, 1967Google Scholar
  273. 273.
    Albert RE, Burns FJ, Heimbach RD: The association between chronic radiation damage of the hair follicles and tumor formation in the rat. Radiat Res 30: 590–599, 1967Google Scholar
  274. 274.
    Albert RE, Phillips ME, Bennett P, Burns F, Heimbach R: The morphology and growth characteristics of radiation-induced epilhelial skin tumors in the rat. Cancer Res 29: 658–668, 1969Google Scholar
  275. 275.
    Andreasen E, Engelbreth-Holm J: On the significance of the mouse hair cycle in experimental carcinogenesis. Acta Pathol Microbiol Scand 32: 165–169, 1953Google Scholar
  276. 276.
    Borum K: The role of the mouse hair cycle in epidermal carcinogenesis. Acta Pathol Microbiol Scand 34: 542–553, 1954Google Scholar
  277. 277.
    Berenblum I, Haran-Ghera N, Trainin N: An experimental analysis of the ‘hair cycle effect’ in mouse skin carcinogenesis. Br J Cancer 12: 402–413, 1958Google Scholar
  278. 278.
    Colsarelis G, Sun T-T, Lavker RM: Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61: 1329–1337, 1990Google Scholar
  279. 279.
    Lavker RM, Miller SM, Wilson C, Cotsarelis G, Wei Z-G, Yang JS, Sun T-T: Hair follicle stem cells: their location, role, in hair cycle, and involvement in skin tumour formation. J Invest Dermatol 101: 16S-26S, 1993Google Scholar
  280. 280.
    Lavker RM, Sun TT: Heterogeneity in epidermal basal keratinocytes: morphological and functional correlations. Science 215: 1239–1241, 1982Google Scholar
  281. 281.
    Schwartz RA: Keratoacanthoma. J Am Acad Dermatol 30: 1–19, 1994Google Scholar
  282. 282.
    Ghadially FN: The role of the hair follicle in the orgin and evolution of some cutaneous neoplasms of man and experimental animals. Cancer 14: 801–816, 1961Google Scholar
  283. 283.
    Ah-See KW, Cooke TG, Pickford IR, Soutar D, Balmain A: An allelotype of squamous carcinoma of the head and neck using micro satellite markers. Cancer Res 54: 1617–1621, 1994Google Scholar
  284. 284.
    Holmberg E, Rozell BL, Toftgard R: Differential allele loss on chromosome 9q22.3 in human non-melanoma skin cancer. Br J Cancer 74: 246–250, 1996Google Scholar
  285. 285.
    Eklund LK, Lindstrom E, Unden AB, Lundh-Rozzell B, Stahle-Backdahl M, Zaphiropoulos PG, Toftgard R, Soderkvist P: Mutation analysis of the human homologue of Drosophila patched and the xeroderma pigmentosum complementation group A genes in squamous cell carcinomas of the skin. Mol Carcinog 21: 87–92, 1998Google Scholar
  286. 286.
    Petrianu A, Boson WL, Bale AE, Friedman E, De Marco L: Mutational analysis of candidate genes in human squamous cell carcinomas. Laryngoscope 109: 661–663, 1999Google Scholar
  287. 287.
    Savoia P, Trusolino L, Pepino E, Cremona O, Marachisio PC: Expression and topography of integrins and basement membrane proteins in epidermal carcinomas: basal but not squamous cell carcinomas display loss of alpha 6 beta 4 and BM-600/nicein. J Invest Dermatol 101: 352–358, 1993Google Scholar
  288. 288.
    Vahlquist A, Andersson E, Coble BI, Rollman O, Torma H: Increased concentrations of 3,4-didehyroretinol and retinoic acid-binding protein (CRABPII) in human squamous cell carcinoma and keratoacanthoma but not in basal cell carcinoma of the skin. J Invest Dermatol 106: 1070–1074, 1996Google Scholar
  289. 289.
    Morales-Ducret CR, van den Rijn M, LeBrun DP, Smoller BR: bcl-2 expression in primary malignancies of the skin. Arch Dermatol 131: 909–912, 1995Google Scholar
  290. 290.
    Waring AJ, Takata M, Rehman I, Rees JL: Loss of heterozygosity analysis of keratoacanthoma reveals multiple differences from cutaneous squamous cell carcinoma. Br J Cancer 73: 649–653, 1996Google Scholar
  291. 291.
    Peris K, Magrini F, Keller G, Manente L, D'Allessandro E, Onorati MT, Hofler H, Chimenti S: Analysis of microsatellite instability and loss of heterozygosity in keratoacanthoma. Arch Dermatol Res 289: 185–188, 1997Google Scholar
  292. 292.
    Moll R, Moll I, Franke WW: Differences of expression of cytokeratin polypeptides in various epithelial skin tumours. Arch Dermatol Res 276: 349–363, 1984Google Scholar
  293. 293.
    Kvedar JC, Fewkes J, Baden HP: Immunologic detection of markers of keratinocyte differentiation. Its use in neoplastic and preneoplastic lesions of skin. Arch Pathol Lab Med 110: 183–188, 1986Google Scholar
  294. 294.
    Stephenson TJ, Royds JA, Bleehen SS, Silcocks PB, Rees CR: ‘Anti-Metastatic’ nm23 gene product expression in keratoacanthoma and squamous cell carcinoma. Dermatology 187: 95–99, 1993Google Scholar
  295. 295.
    Royds JA, Stephenson TJ, Silcocks PB, Bleehen SS: Proliferating cell nuclear antigen immunostaining in keratoacanthoma and squamous cell carcinoma of the skin. Pathologica 86: 612–616, 1994Google Scholar
  296. 296.
    Cain CT, Niemann TH, Argenyi ZB: Keratoacanthoma verus squamous cell carcinoma. An immunohistochemical reappraisal of p53 protein and proliferating cell nuclear antigen expression in keratoacanthoma-like tumors. Am J Dermatopathol 17: 324–331, 1995Google Scholar
  297. 297.
    Krunic AL, Garrod DR, Hunter JAA, Clark RE: Desmoglein in multiple self-healing squamous epithelioma of Ferguson-Smith — comparison of staining patterns with actinic keratoacanthoma and squamous cell carcinoma of the skin. Arch Dermatol Res 290: 319–324, 1998Google Scholar
  298. 298.
    Patel A, Halliday GM, Cooke BE, Barnetson RS: Evidence that regression in keratoacanthoma is immunologically mediated: a comparison with squamous cell carcinoma. Br J Dermatol 131: 789–798, 1994Google Scholar
  299. 299.
    Ferguson-Smith J: A case of multiple primary squamous-celled carcinomata of the skin in a young man, with spontaneous healing. Br J Dermatol 46: 267–272, 1934Google Scholar
  300. 300.
    Young SK, Larsen PE, Markowitz NR: Generalized eruptive keratoacanthoma. Oral Surg Oral Med Oral Pathol 62: 422–426, 1986Google Scholar
  301. 301.
    Wright AL, Gawkrodger DJ, Branford WA, McLaren K, Hunter JAA: Self-healing epitheliomata of Ferguson-Smith: cytogenetic and histological studies, and the therapeutic effect of etretinate. Dermatologica 176: 22–28, 1988Google Scholar
  302. 302.
    Goudie DR, Yuille MAR, Levarsha MA, Furlong RA, Carter NP, Lush MJ, Affara NA, Ferguson-Smith MA: Multiple self-healing squamous epitheliomata (ESS1) mapped to chromosome 9q22-q31 in families with common ancestry. Nat Genet 3: 165–169, 1993Google Scholar
  303. 303.
    Richards FM, Goudie DR, Cooper WN, Jene Q, Barroso I, Wicking C, Wainwright B, Ferguson-Smith MA: Mapping the multiple self-healing squamous epithelioma (MSSE) gene and investigation of xeroderma pigmentosum group A (XPA) and PATCHED (PTCH) as candidate genes. Hum Genet 101: 317–322, 1997Google Scholar
  304. 304.
    Kinzler KW, Vogelstein B: Gatekeepers and caretakers. Nature 386: 761–763, 1997Google Scholar
  305. 305.
    Ringborg U, Lambert B, Landergen J, Lewensohn R: Decreased UV-induced DNA repair synthesis in peripheral leukocytes from patients with the nevoid basal cell carcinoma syndrome. J Invest Dermatol 76: 268–270, 1981Google Scholar
  306. 306.
    Wei Q, Matanoski GM, Farmer ER, Hedayati MA, Grossman L: DNA repair capacity for ultraviolet light-induced damage is reduced in peripheral lymphocytes from patients with basal cell carcinoma. J Invest Dermatol 104: 933–936, 1995Google Scholar
  307. 307.
    Bassukus ID, Schell H, Arai A, Hofmann P: Hyposensitivity of basal cell naevus syndrome dermal fibroblasts to ultraviolet A. Lancet 336: 825, 1990Google Scholar
  308. 308.
    Frentz G, Munch-Petersen B, Wulf HC, Niebuhr E, da Cunha Bang F: The nevoid basal cell carcinoma syndrome: sensitivity to ultraviolet and X-ray irradiation. J Am Acad Dermatol 17: 637–643, 1987Google Scholar
  309. 309.
    Applegate LA, Goldberg LH, Ley RD, Ananthaswamy HN: Hypersensitivity of skin fibroblasts from basal cell nevus syndrome patients to killing by ultraviolet B but not by ultraviolet C radiation. Cancer Res 50: 637–641, 1990Google Scholar
  310. 310.
    Featherstone T, Taylor AM, Harnden DG: Studies on the radiosensitivity of cells from patients with basal cell naevus syndrome. Am J Hum Genet 35: 58–66, 1983Google Scholar
  311. 311.
    Chan GL, Little JB: Cultured diploid fibroblasts from patients with the nevoid basal cell carcinoma syndrome are hypersensitive to killing by ionizing radiation. Am J Pathol 111: 50–55, 1983Google Scholar
  312. 312.
    Little JB, Nichols WW, Troilo P, Nagasawa H, Strong LC: Radiation sensitivity of cell strains from families with genetic disorders predisposing to radiation-induced cancer. Cancer Res 49: 4705–4714, 1989Google Scholar
  313. 313.
    Newton JA, Black AK, Arlett CF, Cole J: Radiobiological studies in the naevoid basal cell carcinoma syndrome. Br J Dermatol 123: 573–580, 1990Google Scholar
  314. 314.
    Hahn H, Wojnowski L, Zimmer AM, Hall J, Miller G, Zimmer A: Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome. Nat Med 4: 619–622, 1998Google Scholar
  315. 315.
    Romke C, Godde-Salz E, Grote W: Investigations of chromosomal stability in the Gorlin-Goltz syndrome. Arch Dermatol Res 277: 370–372, 1985Google Scholar
  316. 316.
    Nagasawa H, Little FF, Burke MJ, McCone EF, Targovnik HS, Chan GL, Little JB: Study of basal cell nevus syndrome fibroblasts after treatment with DNA-damaging agents. Basic Life Sci 29B: 775–785, 1984Google Scholar
  317. 317.
    Sarto F, Mazzotti D, Tomanin R, Corsi GC, Peserico A: No evidence of chromsomal instability in nevoid basal-cell carcinoma syndrome. Mutat Res 225: 21–26, 1989Google Scholar
  318. 318.
    Bale AE, Bale SJ, Murli H, Ivett J, Mulvihill JJ, Parry DM: Sister chromatid exchange and chromosome fragility in the nevoid basal cell carcinoma syndrome. Cancer Genet Cytogenet 42: 273–279, 1989Google Scholar
  319. 319.
    Shafei-Benaissa E, Huret JL, Larregue M, Babin P, Tanzer J, Decrozailles JM, Savage JR: Checks for chromosomal instability in Gorlin and non-Gorlin basal-cell carcinoma patients. Mutat Res 308: 1–9, 1994Google Scholar
  320. 320.
    Shafei-Benaissa E, Savage JRK, Papworth D, Babin P, Larregue M, Tanzer J, Bonnetblanc JM, Vaillant L, Huret JL: Evidence of chromosomal instability in the lymphocytes of Gorlin basal-cell carcinoma patients. Mutat Res 332: 27–32, 1995Google Scholar
  321. 321.
    Shafei-Benaissa E, Savage JRK, Babin P, Larregue M, Papworth D, Tanzer J, Bonnetblanc JM, Huret JL: The naevoid basal-cell carcinoma syndrome (Gorlin syndrome) is a chromosomal instability syndrome. Mutat Res 397: 287–292, 1998Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Daniel R. Booth
    • 1
  1. 1.Department of PathologyUniversity of CambridgeCambridgeUK

Personalised recommendations