Plant Molecular Biology

, Volume 42, Issue 1, pp 45–75

Contributions of plant molecular systematics to studies of molecular evolution

  • E. Douglas Soltis
  • Pamela S. Soltis
Article

Abstract

Dobzhansky stated that nothing in biology makes sense except in the light of evolution. A close corollary, and the central theme of this paper, is that everything makes a lot more sense in the light of phylogeny. Systematics is in the midst of a renaissance, heralded by the widespread application of new analytical approaches and the introduction of molecular techniques. Molecular phylogenetic analyses are now commonplace, and they have provided unparalleled insights into relationships at all levels of plant phylogeny. At deep levels, molecular studies have revealed that charophyte green algae are the closest relatives of the land plants and suggested that liverworts are sister to all other extant land plants. Other studies have suggested that lycopods are sister to all other vascular plants and clarified relationships among the ferns. The impact of molecular phylogenetics on the angiosperms has been particularly dramatic – some of the largest phylogenetic analyses yet conducted have involved the angiosperms. Inferences from three genes (rbcL, atpB, 18S rDNA) agree in the major features of angiosperm phylogeny and have resulted in a reclassification of the angiosperms. This ordinal-level reclassification is perhaps the most dramatic and important change in higher-level angiosperm taxonomy in the past 200 years. At lower taxonomic levels, phylogenetic analyses have revealed the closest relatives of many crops and ‘model organisms’ for studies of molecular genetics, concomitantly pointing to possible relatives for use in comparative studies and plant breeding. Furthermore, phylogenetic information has contributed to new perspectives on the evolution of polyploid genomes. The phylogenetic trees now available at all levels of the taxonomic hierarchy for angiosperms and other green plants should play a pivotal role in comparative studies in diverse fields from ecology to molecular evolution and comparative genetics.

angiosperms land plants model organisms phylogenetics polyploidy seed plants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akkermans ADL, van Dijk C: Non-leguminous root-nodule symbioses with actinomycetes and Rhizobium. In: Broughton WJ (ed), Nitrogen Fixation, Vol. 1, pp. 57–103. Clarendon, Oxford (1981).Google Scholar
  2. 2.
    Albach DC, Soltis PS, Soltis DE, Olmstead RG: Phylogenetic analysis of the Asteridae s.l. using sequences of four genes. Ann Miss Bot Gard (submitted).Google Scholar
  3. 3.
    Almeida J, Rocheta M, Galego L: Genetic control of flower shape in Antirrhinum majus. Development 124: 1387–1392 (1997).Google Scholar
  4. 4.
    Alverson WS, Karol KG, Baum DA, Chase MW, Swensen SM, McCourt R, Sytsma J: Circumscription of the Malvales and relationships to other Rosidae: evidence from rbcL sequence data. Am J Bot 85: 876–877 (1998).Google Scholar
  5. 5.
    Angiosperm Phylogeny Group (APG): An ordinal classification for the families of flowering plants. Ann Miss Bot Gard 85: 531–553 (1998).Google Scholar
  6. 6.
    Avise JC: Molecular Markers, Natural History, and Evolution. Chapman & Hall, New York (1994).Google Scholar
  7. 7.
    Baker DD, Mullin BC: Actinorhizal symbioses. In: Stacey G, Burris RH, Evans HJ (eds), Biological Nitrogen Fixation, pp. 259–291. Chapman & Hall, New York (1992).Google Scholar
  8. 8.
    Barker NP, Linder HP, Harley EH: Polyphyly of Arundinoideae (Poaceae): evidence from rbcL sequence data. Syst Bot 20: 423–435 (1995).Google Scholar
  9. 9.
    Baum DA: The evolution of plant development. Curr Opin Plant Biol 1: 79–86 (1998).Google Scholar
  10. 10.
    Bayer CM, Fay MF, de Bruijn AY, Savolainen V, Morton CM, Kubitzki K, Chase MW: Support for an expanded concept of Malvaceae within a recircumscribed order Malvales: a combined analysis of plastid atpB and rbcL DNA sequences. Bot J Linn Soc 129: 267–303 (1999).Google Scholar
  11. 11.
    Bhattacharya D, Ehlting L: Actin coding regions: gene family evolution and use as a phylogenetic marker. Arch Protistenkd 145: 155–164 (1995).Google Scholar
  12. 12.
    Bhattacharya D, Medlin L: Algal phylogeny and the origin of land plants. Plant Physiol 116: 9–15 (1998).Google Scholar
  13. 13.
    Bohs L, Olmstead RG: Phylogenetic relationships in Solanum (Solanaceae) based on ndhF sequences. Syst Bot 22: 5–17 (1997).Google Scholar
  14. 14.
    Bonierbale MW, Plaisted RL, Tanksley SD: RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120: 1095–1103 (1988).Google Scholar
  15. 15.
    Boutin SR, Young ND, Olson TC, Hu Z-H, Shoemaker RC, Vallejos CE: Genome conservation among three legume genera detected with DNA markers. Genome 38: 928–937 (1995).Google Scholar
  16. 16.
    Bowman JL, Smyth DR, Meyerowitz EM: Genes directing flower development in Arabidopsis. Plant Cell 1: 37–52 (1989).Google Scholar
  17. 17.
    Bowman JL, Smyth DR, Meyerowitz EM: Genetic interactions among floral homeotic genes of Arabidopsis. Development 112: 1–20 (1991).Google Scholar
  18. 18.
    Bradley D, Carpenter R, Sommer H, Hartley N, Coen E: Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the PLENA locus of Antirrhinum. Cell 72: 85–95 (1993).Google Scholar
  19. 19.
    Bull JJ, Huelsenbeck JP, Cunningham CW, Swofford, DL, Waddell, PJ: Partitioning and combining data in phylogenetic analysis. Syst Biol 42: 384–397 (1993).Google Scholar
  20. 20.
    Capesius I: A molecular phylogeny of bryophytes based on the nuclear encoded 18S rRNA genes. J Plant Physiol 146: 59–63 (1995).Google Scholar
  21. 21.
    Capesius I, Bopp M: New classification of liverworts based on molecular and morphological data. Plant Syst Evol 207: 87–97 (1997).Google Scholar
  22. 22.
    Carpenter R, Coen ES: Floral and homeotic mutations produced by transposon mutagenesis in Antirrhinum majus. Genes Dev 4: 1483–1493 (1990).Google Scholar
  23. 23.
    Chapman RL, Buchheim MA, Delwiche CF, Friedl T, Huss VAR, Karol KG, Lewis LA, Manhart, J, McCourt RM, Olsen JL, Waters DA: Molecular systematics of the green algae. In: Soltis DE, Soltis PS, Doyle JJ (eds), Molecular Systematics of Plants II: DNA Sequencing, pp. 508–540. Kluwer Academic Publishers, Boston (1998).Google Scholar
  24. 24.
    Chase MW, Albert VA: A perspective on the contribution of plastid rbcL DNA sequences to angiosperm phylogenetics. In: Soltis DE, Soltis PS, Doyle JJ (eds), Molecular Systematics of Plants II: DNA Sequencing, pp. 248–507. Kluwer Academic Publishers, Boston (1998).Google Scholar
  25. 25.
    Chase MW, Cox AV: Gene sequences, collaboration and analysis of large data sets. Aust Syst Bot 11: 215–229 (1998).Google Scholar
  26. 26.
    Chase MW, Duvall MR, Hills HG, Conran JG, Cox AV, Eguiarte LE, Hartwell J, Fay MF, Chaddick LR, Cameron KM, Hoot S: Molecular phylogenetics of Lilianae. In: Rudall PJ, Cribb, PJ, Cutler DF, Humphries CJ (eds), Monocotyledons: Systematics and Evolution, pp. 109–137. Royal Botanic Gardens, Kew (1995).Google Scholar
  27. 27.
    Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duval MR, Price RA, Hills HG, Qiu Y-L, Kron KA, Rettig JH, Conti E, Palmer JD, Manhart JR, Sytsma KJ, Michael HJ, Kress WJ, Karol KG, Clark WD, Hedren M, Gaut BS, Jansen RK, Kim K-J, Wimpee CF, Smith JF, Furnier GR, Strauss SH, Xiang Q-Y, Plunkett GM, Soltis PS, Swensen SM, Williams SE, Gadek PA, Quinn CJ, Eguiarte LE, Golenberg E, Learn GH Jr., Graham SW, Barrett SCH, Dayanandan S, Albert VA: Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Miss Bot Gard 80: 528–580 (1993).Google Scholar
  28. 28.
    Chase MW, Soltis DE, Soltis PS, Rudall PJ, Fay MF, Hahn WH, Sullivan S, Joseph J, Givnish T, Sytsma KJ, Pires C: Higher-level systematics of the monocotyledons: an assessment of current knowledge and a new classification. Sydney Monocot Symposium (in press).Google Scholar
  29. 29.
    Chase MW, Stevenson DW, Wilkin P, Rudall PJ: Monocot systematics: a combined analysis. In: Rudall PJ, Cribb, PJ, Cutler DF, Humphries CJ (eds), Monocotyledons: Systematics and Evolution, pp. 685–730. Royal Botanic Gardens, Kew (1995).Google Scholar
  30. 30.
    Chaw S-M, Zharkikh A, Sung H-M, Lau T-C, Li W-H: Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences. Mol Biol Evol 14: 56–68 (1997).Google Scholar
  31. 31.
    Chen Q, Armstrong K: Genomic in situ hybridization in Avena sativa. Genome 37: 607–612 (1994).Google Scholar
  32. 32.
    Chew FS: Are crucivores controlled by mustard oils? No. In: Cutler HG (ed), Biologically Active Natural Products, pp. 155–181. American Chemical Society, Washington, DC (1988).Google Scholar
  33. 33.
    Clark LG, Zhang W, Wendel JF: A phylogeny of the grass family (Poaceae) based on ndhF sequence data. Syst Bot 20: 436–460 (1995).Google Scholar
  34. 34.
    Coen ES, Meyerowitz EM: The war of the whorls: genetic interactions controlling flower development. Nature 353: 31–37 (1991).Google Scholar
  35. 35.
    Cook LM, Soltis PS, Brunsfeld SJ, Soltis DE: Multiple independent formations of Tragopogon tetraploids (Asteraceae): evidence from RAPD markers. Mol Ecol 7: 1293–1302 (1998).Google Scholar
  36. 36.
    Crane, PR: Phylogenetic analysis of seed plants and the origin of angiosperms. Ann Miss Bot Gard 72: 716–793 (1985).Google Scholar
  37. 37.
    Cronquist A: An Integrated System of Classification of Flowering Plants. Columbia University Press, New York (1981).Google Scholar
  38. 38.
    Cummings MP, King LM, Kellogg EA: Slipped-strand mispairing in a plastid gene: rpoC2 in grasses (Poaceae). Mol Biol Evol 11: 1–8 (1994).Google Scholar
  39. 39.
    Dahlgren RT: A system of classification of the angiosperms to be used to demonstrate the distribution of characters. Bot Not 128: 119–147 (1975).Google Scholar
  40. 40.
    Dahlgren RT: A commentary on a diagrammatic presentation of the angiosperms in relation to the distribution of character states. Plant Syst Evol (Suppl. 1): 253–283 (1977).Google Scholar
  41. 41.
    Dahlgren RT: A revised system of classification of the angiosperms. Bot J Linn Soc 80: 91–124 (1980).Google Scholar
  42. 42.
    Davis JI, Simmons MP, Stevenson DW, Wendel JW: Data decisiveness, data quality, and incongruence in phylogenetic analysis: an example from the monocotyledons using mitochondrial atpA sequences. Syst Biol 47: 282–310 (1998).Google Scholar
  43. 43.
    Delgado-Salinas A, Bruneau A, Doyle JJ: Chloroplast DNA phylogenetic studies in New World Phaseolinae (Leguminosae: Papilionoideae: (Phaseoleae)). Syst Bot 18: 6–17 (1993).Google Scholar
  44. 44.
    Delgado-Salinas A, Turley T, Richman A, Lavin M: Phylogenetic analysis of the cultivated and wild species of Phaseolus (Fabaceae). Syst Bot, in press.Google Scholar
  45. 45.
    Delwiche, CF, Kuhsel M, Palmer, JD: Phylogenetic analysis of tufA sequences indicates a cyanobacterial origin of all plastids. Mol Phyl Evol 4: 110–128 (1995).Google Scholar
  46. 46.
    de Queiroz A: For consensus (sometimes). Syst Biol 42: 368–372 (1993).Google Scholar
  47. 47.
    de Queiroz A, Donoghue MJ, Kim J: Separate versus combined analysis of phylogenetic evidence. Annu Rev Ecol Syst 26: 657–681 (1995).Google Scholar
  48. 48.
    Dobzhansky T: Nothing in biology makes sense except in the light of evolution. Am Biol Teacher 35:125–129 (1973).Google Scholar
  49. 49.
    Doebley J: Molecular systematics of Zea (Gramineae). Maydica 35: 143–150 (1990).Google Scholar
  50. 50.
    Doebley J, Durbin M, Golenberg EM, Clegg MT, Ma D P: Evolutionary analysis of the large subunit of carboxylase (rbcL) nucleotide sequence data among the grasses (Poaceae). Evolution 44: 1097–1108 (1990).Google Scholar
  51. 51.
    Doebley J, Renfroe W, Blanton A: Restriction site variation in the Zea chloroplast genome. Genetics 117: 139–147 (1987).Google Scholar
  52. 52.
    Donoghue MJ, Ree RH, Baum DA: Phylogeny and the evolution of flower symmetry in the Asteridae. Trends Plant Sci 3: 311–317 (1998).Google Scholar
  53. 53.
    Doyle JA: Phylogeny of vascular plants. Annu Rev Ecol Syst 29: 567–599 (1998).Google Scholar
  54. 54.
    Doyle JA: Molecules, morphology, fossils and the relationship of angiosperms and Gnetales. Mol Phyl Evol 9: 448–462 (1998).Google Scholar
  55. 55.
    Doyle JA, Donoghue MJ: Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Bot Rev 52: 321–431 (1986).Google Scholar
  56. 56.
    Doyle JA, Donoghue MJ: The importance of fossils in elucidating seed plant phylogeny and macroevolution. Rev Palaeobot Palynol 50: 63–95 (1987).Google Scholar
  57. 57.
    Doyle JA, Donoghue MJ: Fossils and seed plant phylogeny reanalyzed. Brittonia 44: 89–106 (1992).Google Scholar
  58. 58.
    Doyle JA, Hotton CL: Diversification of early angiosperm pollen in a cladistic context. In: Blackmore S, Barnes SH (eds), Pollen and Spores, pp. 169- 195. Clarendon Press, Oxford.Google Scholar
  59. 59.
    Doyle JJ: Phylogeny of the legume family: an approach to understanding the origins of nodulation. Annu Rev Ecol Syst 25: 325–49 (1994).Google Scholar
  60. 60.
    Doyle JJ: Phylogenetic perspectives on nodulation: evolving views of plants and symbiotic bacteria. Trends Plant Sci 3: 473–478 (1998).Google Scholar
  61. 61.
    Doyle JJ, Davis JI, Soreng RJ, Garvin D, Anderson MJ: Chloroplast DNA inversions and the origin of the grass family (Poaceae). Proc Natl Acad Sci USA 89: 7722–7726 (1992).Google Scholar
  62. 62.
    Doyle JJ, Doyle JL: Chloroplast DNA phylogeny of the papilionoid legume tribe Phaseoleae. Syst Bot 18: 309–327 (1993).Google Scholar
  63. 63.
    Doyle JJ, Doyle JL, Ballenger JA, Dickson EE, Kajita T, Ohashi H: A phylogeny of the chloroplast gene rbcL in the Leguminosae: taxonomic correlations and insights into the evolution of nodulation. Am J Bot 84: 541–554 (1997).Google Scholar
  64. 64.
    Doyle JJ, Doyle JL, Brown AHD: A chloroplast DNA phylogeny of the wild perennial relatives of soybean (Glycine subgenus Glycine): congruence with morphological and crossing groups. Evolution 44: 371–389 (1990).Google Scholar
  65. 65.
    Doyle JJ, Doyle JL, Brown AHD. Incongruence in the diploid B-genome species complex of Glycine (Leguminosae) revisited: histone H3-D alleles vs. chloroplast haplotypes. Mol Biol Evol 16: 354–362 (1999).Google Scholar
  66. 66.
    Doyle JJ, Kanazin V, Shoemaker RC: Phylogenetic utility of histone H3 intron sequences in the perennial relatives of soybean (Glycine: Leguminosae). Mol Phyl Evol 64: 438–447 (1996).Google Scholar
  67. 67.
    Downie SR, Palmer JD: Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. In: Soltis PS, Soltis DE, Doyle JJ (eds.), Molecular Systematics of Plants, pp. 14–35. Chapman & Hall, New York (1992).Google Scholar
  68. 68.
    Duff RJ, Nickrent DL: Phylogenetic relationships of land plants using mitochondrial small-subunit rDNA sequences. Am J Bot 86: 372–386 (1999).Google Scholar
  69. 69.
    Duvall MR, Clegg MT, Chase MW, Clark WD, Kress WJ, Hills HG, Eguiarte LE, Smith JF, Gaut BS, Zimmer EA, Learn GH Jr: Phylogenetic hypotheses for the monocotyledons constructed form rbcL sequences. Ann Miss Bot Gard 80: 607–619 (1993).Google Scholar
  70. 70.
    Eernisse DJ, Kluge AG: Taxonomic congruence versus total evidence, and the phylogeny of anmiotes inferred from fossils, molecules and morphology. Mol Biol Evol 10: 1170–1195 (1993).Google Scholar
  71. 71.
    Ehrlich PR, Raven PH: Butterflies and plants: a study in coevolution. Evolution 18: 586–608 (1965).Google Scholar
  72. 72.
    Embley MT, Hirt RP, Williams DM: Biodiversity at the molecular level: the domains, kingdoms and phyla of life. Phil Trans R Soc Lond 345: 21–31 (1994).Google Scholar
  73. 73.
    Endress PK: Evolution and floral diversity: the phylogenetic surroundings of Arabidopsis and Antirrhinum. Int J Plant Sci 153: S106–S122 (1992).Google Scholar
  74. 74.
    Endress PK: Antirrhinum and Asteridae: evolutionary changes of floral symmetry. Soc Exp Biol Symp Series 51: 133–140 (1997).Google Scholar
  75. 75.
    Erickson LR, Strauss NA, Beversdorf WB: Restriction patterns reveal origins of chloroplast genomes in Brassica amphidiploids. Theor Appl Genet 65: 201–206 (1983).Google Scholar
  76. 76.
    Farris JS: Jac, Version 4.4. Swedish Museum of Natural History, Stockholm (1996).Google Scholar
  77. 77.
    Farris JS, Albert VA, Källersjö M, Lipscomb D, Kluge AG: Parsimony jackknifing outperforms neighbor-joining. Cladistics 12: 99–124 (1996).Google Scholar
  78. 78.
    Farris JS, Källersjö M, Kluge AG, Bult C: Testing signifi-cance of incongruence. Cladistics 10: 315–319 (1995).Google Scholar
  79. 79.
    Felsenstein J: The number of evolutionary trees. Syst Zool 27: 27–33 (1978).Google Scholar
  80. 80.
    Felsenstein, J: Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 (1985).Google Scholar
  81. 81.
    Fenwick GR, Heaney RK, Mullin WJ: Glucosinolates and their breakdown products in food and food plants. Crit Rev Food Sci Nutr 18: 123–201 (1983).Google Scholar
  82. 82.
    Friedl T: The evolution of the green algae. Plant Syst Evol (1997). [Suppl.] II: 87–101.Google Scholar
  83. 83.
    Gadek PA, Fernando ES, Quinn CJ, Hoot SB, Terrazas T, Sheahan MC, Chase MW: Sapindales: molecular delimitation and infraordinal groups. Am J Bot 83: 802–811 (1996).Google Scholar
  84. 84.
    Gale MD, Devos, KM: Comparative genetics in the grasses. Proc Natl Acad Sci USA 95: 1971–1974 (1998).Google Scholar
  85. 85.
    Gale MD, Devos, KM: Plant comparative genetics after 10 years. Science 282: 656–658 (1998).Google Scholar
  86. 86.
    Gaut BS, Doebley JF: DNA sequence evidence for the segmental allopolyploid origin of maize. Proc Natl Acad Sci USA 94: 6809–6814 (1997).Google Scholar
  87. 87.
    Goloboff P: Pee-Wee and NONA. Computer programs and documentation. New York (1993).Google Scholar
  88. 88.
    Goremykin V, Bobrova V, Pahnke J, Troitsky A, Antonov A, Martin W: Noncoding sequences from the slowly evolving chloroplast inverted repeat in addition to rbcL data do not support gnetalean affinities of angiosperms. Mol Biol Evol 13: 383–396 (1996).Google Scholar
  89. 89.
    Govindaraju DR, Lewis P, Cullis C: Phylogenetic analysis of pines using ribosomal DNA restriction fragment length polymorphisms. Plant Syst Evol 179: 141–153 (1992).Google Scholar
  90. 90.
    Graham LE: Origin of Land Plants. Wiley, New York (1993).Google Scholar
  91. 91.
    Grant, V: Plant Speciation, 2nd ed. Columbia University Press, New York (1981).Google Scholar
  92. 92.
    Graur D, Duret L, Gouy M: Phylogenetic position of the order Lagomorpha (rabbits, hares and allies). Nature 379: 333–335 (1996).Google Scholar
  93. 93.
    Graybeal A: Is it better to add taxa or characters to a difficult phylogenetic problem? Syst Biol 47: 9–17 (1998).Google Scholar
  94. 94.
    Hamby RK, Zimmer EA: Ribosomal RNA as a phylogenetic tool in plant systematics. In: Soltis PS, Soltis DE, Doyle JJ (eds), Molecular Systematics of Plants, pp. 50–91. Chapman & Hall, New York (1992).Google Scholar
  95. 95.
    Harvey PH, Pagel MD: The Comparative Method in Evolutionary Biology. Oxford University Press, New York (1991).Google Scholar
  96. 96.
    Hasebe M, Kofuji R, Ito M, Kato M, Iwatsuki K, Ueda K: Phylogeny of gymnosperms inferred from rbcL gene sequences. Bot Mag 105: 673–679 (1992).Google Scholar
  97. 97.
    Hasebe M, Wolf PG, Pryer KM, Ueda K, Ito M, Sano R, Gastony GJ, Yokoyama J, Manhart JR, Murakami N, Crane EH, Haufler CH, Hauk WD: Fern phylogeny based on rbcL nucleotide sequences. Am Fern J 85: 134–181 (1995).Google Scholar
  98. 98.
    Hedderson TA., Chapman RL, Rootes WL: Phylogenetic relationships of bryophytes inferred from nuclear-encoded rRNA gene sequences. Plant Syst Evol 200: 213–224 (1996).Google Scholar
  99. 99.
    Heiser CB: Study in the evolution of the sunflower species Helianthus annuus and H. bolanderi. Univ Calif Publ Bot 23: 157–196 (1949).Google Scholar
  100. 100.
    Helentjaris T, Weber D, Wright S: Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms. Genetics 118: 353 (1988).Google Scholar
  101. 101.
    Hershkovitz MA, Zimmer EA: On the evolutionary origins of the cacti. Taxon 46: 217–232 (1997).Google Scholar
  102. 102.
    Hickey LJ, Taylor DW: Origin of the angiosperm flower. In: Taylor DW, Hickey LJ (eds), Flowering Plant Origin, Evolution and Phylogeny, pp. 176–231. Chapman & Hall, New York (1996).Google Scholar
  103. 103.
    Hillis DM: Inferring complex phylogenies. Nature 383: 130 (1996).Google Scholar
  104. 104.
    Hillis DM, Huelsenbeck JP, Swofford DL: Hobgoblin of phylogenetics? Nature 369: 363–364 (1994).Google Scholar
  105. 105.
    Huelsenbeck JP, Bull JJ: A likelihood ratio test for detection of conflicting phylogenetic signal. Syst Biol 45: 92–98 (1996).Google Scholar
  106. 106.
    Huelsenbeck JP, Bull JJ, Cunningham CW: Combining data in phylogenetic analysis. Trends Ecol Evol 11: 152–158 (1996).Google Scholar
  107. 107.
    Huss VAR, Kranz HD: Charophyte evolution and the origin of land plants. Plant Syst Evol (Suppl.) 11: 103–114 (1997).Google Scholar
  108. 108.
    Jansen RK, Kim K-J: Implications of chloroplast DNA data for the classification and phylogeny of the Asteraceae. In: Hind DJN, Beentje H (eds), Compositae: Systematics, Vol. 1., pp. 317–339. Proceedings of the International Compositae Conference, Kew, 1994. Royal Botanic Gardens, Kew (1996).Google Scholar
  109. 109.
    Jellen EN, Gill BS, Cox TS: Genomic in situ hybridization differentiates between A/D-and C-genome chromatin and detects intergenomic translocations in polyploid oat species (genus Avena). Genome 37: 607–612 (1994).Google Scholar
  110. 110.
    Jiang, Q-X, Wright RJ, El-Zik KM, Paterson AH: Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci USA 95: 4419–4424 (1998).Google Scholar
  111. 111.
    Johnson LA, Soltis DE: Assessing congruence: empirical examples from molecular data. In: Soltis DE, Soltis PS, Doyle JJ (eds), Molecular Systematics of Plants II: DNA Sequencing, pp. 297–348. Kluwer Academic Publishers, Boston (1998).Google Scholar
  112. 112.
    Jones TR, Kluge AG, Wolf AJ: When theories and methodologies clash: a phylogenetic reanalysis of the North American ambystomatid salamanders (Caudata: Ambystomatidae). Syst Biol 42: 92–102 (1993).Google Scholar
  113. 113.
    Judd R, Sanders RW, Donoghue MJ: Angiosperm family pairs: preliminary phylogenetic analyses. Harvard Pap Bot 5: 1–51 (1994).Google Scholar
  114. 114.
    Källersjö M, Farris JS, Chase MW, Bremer B, Fay MF, Humphries CJ, Petersen G, Seberg OL, Bremer K: Simultaneous parsimony jackknife analysis of 2538 rbcL DNA 72 sequences reveals support for major clades of green plants, land plants, seed plants and flowering plants. Plant Syst Evol 213: 259–287 (1998).Google Scholar
  115. 115.
    Kellogg EA: Relationships of cereal crops and other grasses. Proc Natl Acad Sci USA 95: 2005–2010 (1998).Google Scholar
  116. 116.
    Kellogg EA, Appels R, Mason-Gamer RJ: When genes tell different stories: the diploid genera of Triticeae (Gramineae). Syst Bot 21: 321–347 (1996).Google Scholar
  117. 117.
    Kellogg EA, Juliana ND: The structure and function of Ru-BisCO and their implications for systematic studies. Am J Bot 84: 413–428 (1997).Google Scholar
  118. 118.
    Kellogg EA, Linder HP: Phylogeny of Poales. In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds), Monocotyledons: Systematics and Evolution, pp. 511–542. Royal Botanic Gardens, Kew (1995).Google Scholar
  119. 119.
    Kenrick P, Crane PR: The Origin and Early Diversification of Land Plants. Smithsonian Institution Press, Washington, DC (1997).Google Scholar
  120. 120.
    Kenrick P, Crane PR: The origin and early evolution of plants on land. Nature 389: 33–39 (1997).Google Scholar
  121. 121.
    Kluge AG: A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Syst Zool 38: 7–25 (1989).Google Scholar
  122. 122.
    Kluge AG, Wolf AJ: Cladistics: what's in a word? Cladistics 9: 183–199 (1993).Google Scholar
  123. 123.
    Koch M, Gurganus M, Bishop J, Mitchell-Olds T: Phylogeny and microsatellites for Arabidopsis and Arabis: resources for functional and evolutionary genetics. Plant Biol (in press).Google Scholar
  124. 124.
    Kolukisaoglu HM, Marx MS, Wiegmann C, Hanelt S, Schneider-Portsch AW: Divergence of the phytochrome gene family predates angiosperm evolution and suggests that Selaginella and Equisetum rose prior to Psilotum. J Mol Evol 41: 329–337 (1995).Google Scholar
  125. 125.
    Kramer EM, Dorit RL, Irish VF: Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149: 765–783 (1998).Google Scholar
  126. 126.
    Kranz HD, Huss VAR: Molecular evolution of ferns and allies, and their relationship to seed plants: evidence from complete 18S rRNA gene sequences. Plant Syst Evol 202: 1–11 (1996).Google Scholar
  127. 127.
    Kranz HD, Miks D, Siegler M-L, Capesius I, Sensen CHW, Huss VA: The origin of land plants: phylogenetic relationships between Charophytes, Bryophytes, and vascular plants inferred from complete small subunit ribosomal RNA gene sequences. J Mol Evol 41: 74–84 (1995).Google Scholar
  128. 128.
    Krupkin AB, Liston A, Strauss, SH: Phylogenetic analysis of the hard pines (Pinus subgenus Pinus, Pinaceae) from chloroplast DNA restriction site analysis. Am J Bot 83: 489–498 (1996).Google Scholar
  129. 129.
    La Duke JC, Doebley J: A chloroplast based phylogeny of the Malvaceae. Syst Bot 20: 259–271 (1995).Google Scholar
  130. 130.
    Lagercrantz U: Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangments. Genetics 150: 1217–1228 (1998).Google Scholar
  131. 131.
    Lagercrantz U, Lydiate D: Comparative genome mapping in Brassica. Genetics 144: 1903–1910 (1996).Google Scholar
  132. 132.
    Lanyon SM: Phylogenetic frameworks: towards a firmer foundation for the comparative approach. Biol J Linn Soc 49: 45–61 (1993).Google Scholar
  133. 133.
    Larson A: The comparison of morphological and molecular data in phylogenetic systematics. In: Schierwater B, Streit B, Wagner GP, DeSalle R (eds), Molecular Ecology and Evolution: Approaches and Applications, pp. 371–390. Birkhaüser Verlag, Basel, Switzerland (1994).Google Scholar
  134. 134.
    Lavin M, Eshbaugh E, Hu J-M, Matthes S, Sharrock RA: Monophyletic subgroups of the tribe Millettieae (Leguminosae) as revealed by phytochrome nucleotide sequence data. Am J Bot 85: 412–433 (1998).Google Scholar
  135. 135.
    Leitch IJ, Bennett MD: Polyploidy in angiosperms. Trends Plant Sci 2: 470–476 (1997).Google Scholar
  136. 136.
    Lewis LA, Mishler BD, Vilgalys R: Phylogenetic relationships of the liverworts (Hepaticae), a basal embryophyte lineage, inferred from nucleotide sequence data of the chloroplast gene rbcL. Mol Phyl Evol 7: 377–393 (1997).Google Scholar
  137. 137.
    Little EL Jr, Critchfield WB: Subdivisions of the genus Pinus (pines). USDA, Forest Service, Washington, DC (Miscellaneous Publications 1144) (1969).Google Scholar
  138. 138.
    Liu B, Vega J M, Feldman M: Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. II. Changes in low-copy coding DNA sequences. Genome 41: 535–542 (1998).Google Scholar
  139. 139.
    Livingstone KD, Lackney VK, Blauth JR, Van Wijk R, Jahn MK: Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Theor Appl Genet (in press).Google Scholar
  140. 140.
    Loconte H, Stevenson DW: Cladistics of the Spermatophyta. Brittonia 42: 197–211 (1990).Google Scholar
  141. 141.
    Luo D, Carpenter R, Vincent C, Copsey L, Coen E: Origin of floral asymmetry in Antirrhinum. Nature 383: 794–799 (1996).Google Scholar
  142. 142.
    Luthy B, Matile PH: The mustard oil bomb: rectified analysis of the subcellular organisation of the myrosinase system. Biochem Physiol Pflanzen 179: 5–12 (1984).Google Scholar
  143. 143.
    Lutzoni F, Vilgalys R: Integration of morphological and molecular data sets in estimating fungal phylogenies. Can J Bot (Suppl.) 73: S649–S659 (1995).Google Scholar
  144. 144.
    Maddison DR: The discovery and importance of multiple islands of most-parsimonious trees. Syst Zool 40: 315–328 (1991).Google Scholar
  145. 145.
    Malek O, Lattig K, Hiesel R, Brennicke A, Knoop V: RNA editing in bryophytes and a molecular phylogeny of land plants. EMBO J 15: 1403–1411 (1996).Google Scholar
  146. 146.
    Manhart JR: Phylogenetic analysis of green plant rbcL sequences. Mol Phyl Evol 3: 114–127 (1994).Google Scholar
  147. 147.
    Manhart JR: Chloroplast 16SrDNA sequences and phylogenetic relationships of fern allies and ferns. Am Fern J 85: 182–192 (1995).Google Scholar
  148. 148.
    Mason-Gamer RJ, Kellogg EA: Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Syst Biol 45: 522–543 (1996).Google Scholar
  149. 149.
    Masterson J: Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264: 421–423 (1994).Google Scholar
  150. 150.
    Mathews S, Donoghue MJ: Duplicate gene rooting and dif-ficult rooting problems in plant phylogeny. Am J Bot 85 (abstract): 143 (1998).Google Scholar
  151. 151.
    Mayer MS, Soltis PS: Chloroplast DNA variation in Lens (Leguminosae): phylogenetic relationships and the origin of the cultivated lentil. Theor Appl Genet 87: 773–781 (1994).Google Scholar
  152. 152.
    McDade LA: Hybrids and phylogenetic systematics. I. Patterns of character expression in hybrids and their implications for cladistic analysis. Evolution 44: 1685–1700 (1990).Google Scholar
  153. 153.
    McDade LA: Hybrids and phylogenetic systematics. In: The impact of hybrids on cladistic analysis. Evolution 46: 1329–1346 (1992).Google Scholar
  154. 154.
    McDade LA: Hybridization and phylogenetics. In: Hoch PC, Stephenson AG (eds.) Experimental and Molecular Approaches to Plant Biosytematics, pp. 305–331. Missouri Botanical Garden, St. Louis, MO (1995).Google Scholar
  155. 155.
    McDade LA: Hybrids and phylogenetic systematics. III. Comparison with distance methods. Syst Bot 22: 669–683 (1997).Google Scholar
  156. 156.
    McDowell JM, Huang S, McKinney EC, An Y-Q, Meacher RB: Structure and evolution of the actin gene family in Arabidopsis thaliana. Genetics 142: 587–602 (1996).Google Scholar
  157. 157.
    Mickevich MF, Farris JS: The implications of congruence in Menida. Syst Zool 30: 351–370 (1981).Google Scholar
  158. 158.
    Mishler BD: Cladistic analysis of molecular and morphological data. Am J Phys Anthropol 94: 143–156 (1994).Google Scholar
  159. 159.
    Mishler BD, Lewis LA, Buchheim MA, Renzaglia KS, Garbary DJ, Delwiche CF, Zechman FW, Kantz TS, Chapman RL: Phylogenetic relationships of the 'green algae' and 'bryophytes'. Ann Miss Bot Gard 81: 451–483 (1994).Google Scholar
  160. 160.
    Miyamoto MM, Fitch WM: Testing species phylogenies and phylogenetic methods with congruence. Syst Biol 44: 64–76 (1995).Google Scholar
  161. 161.
    Moniz de Sa M, Drouin G: Phylogeny and substitution rates of angiosperm actin genes. Mol Biol Evol 13: 1198–1212 (1996).Google Scholar
  162. 162.
    Mullin BC, Swensen SM, Goetting-Minesky P: Hypotheses for the evolution of actinorhizal symbioses. In: Gresshoff PM, Roth LE, Stacey G, Newton WE (eds), Nitrogen Fixation Achievements and Objectives, pp. 781–787. Chapman & Hall, New York (1990).Google Scholar
  163. 163.
    Nadot S, Bajon R, Lejeune B: The chloroplast gene rps4 as a tool for the study of Poaceae phylogeny. Plant Syst Evol 191: 27–38 (1994).Google Scholar
  164. 164.
    Nandi WI, Chase MW, Endress PK: A combined cladistic analysis of angiosperms using rbcL and non-molecular data sets. Ann Miss Bot Gard 85: 137–212 (1998).Google Scholar
  165. 165.
    Nickrent DL, Duff JR, Colwell AE, Wolfe AD, Young ND, Steiner KE, dePamphilis CW: Molecular phylogenetic and evolutionary studies of parasitic plants. In: Soltis DE, Soltis PS, Doyle JJ (eds), Molecular Systematics of Plants II: DNA Sequencing, pp. 211–241. Kluwer Academic Publishers, Boston (1998).Google Scholar
  166. 166.
    Nixon KC, Crepet WL, Stevenson D, Friis EM: A reevaluation of seed plant phylogeny. Ann Miss Bot Gard 81: 484–533 (1994).Google Scholar
  167. 167.
    O'Kane SL, Al-Shebaz IA: A synopsis of Arabidopsis (Brassicaceae). Novon 7: 323–327 (1997).Google Scholar
  168. 168.
    O'Kane SL, Schaal BA, Al-Shebaz IA: The origins of Arabidopsis suecica (Brassicaceae) as indicated by nuclear rDNA sequences. Syst Bot 21: 559–566 (1996).Google Scholar
  169. 169.
    Olmstead RG, Bremer B, Scott K, Palmer JD: A parsimony analysis of the Asteridae sensu lato based on rbcL sequences. Ann Miss Bot Gard 80: 700–722 (1993).Google Scholar
  170. 170.
    Olmstead RG, dePamphilis CW, Wolfe AD, Young ND, Reeves PA: Disintegration of the Scrophulariaceae (submitted).Google Scholar
  171. 171.
    Olmstead RG, Palmer JD: Implications for the phylogeny, classification, and biogeography of Solanum from cpDNA restriction site variation. Syst Bot 22: 19–30 (1994).Google Scholar
  172. 172.
    Olmstead RG, Reeves PA: Evidence for the polyphyly of the Scrophulariaceae based on chloroplast rbcL and ndhF sequences. Ann Miss Bot Gard 82: 176–193 (1995).Google Scholar
  173. 173.
    Olmstead RG, Reeves PA, Yen AC: Patterns of sequence evolution and implications for parsimony analysis of chloroplast DNA. In: Soltis DE, Soltis PS, Doyle JJ (eds), Molecular Systematics of Plants II: DNA Sequencing, pp. 164–187. Kluwer Academic Publishers, Boston (1998).Google Scholar
  174. 174.
    Olmstead RG, Sweere JA: Combining data in phylogenetic systematics: an empirical approach using three molecular data sets in the Solanaceae. Syst Biol 43: 467–481 (1994).Google Scholar
  175. 175.
    Ownbey M, McCollum GD: Cytoplasmic inheritance and reciprocal amphiploidy in Tragopogon. Am J Bot 40: 788- 796.Google Scholar
  176. 176.
    Pahnke J, Goremykin V., Bobrova V, Troitsky A, Antonov A, Martin W: Utility of rDNA internal transcribed spacer sequences from the inverted repeat of chloroplast DNA in pteridophyte molecular phylogenetics. In: Camus JM, Gibby M, Johns RJ (eds), Pteridology in Perspective, pp. 217- 230. Royal Botanic Gardens, Kew, UK.Google Scholar
  177. 177.
    Palmer JD, Jorgensen RA, Thompson WF: Chloroplast DNA variation and evolution in Pisum: patterns of change and phylogenetic analysis. Genetics 109: 195–213 (1985).Google Scholar
  178. 178.
    Palmer JD, Shields CR, Cohen DB, Orton TJ: Chloroplast DNA evolution and the origin of the amphidiploid Brassica species. Theor Appl Genet 65: 181–189 (1983).Google Scholar
  179. 179.
    Patterson C, Williams DM, Humphries CJ: Congruence between molecular and morphological phylogenies. Annu Rev Ecol Syst 24: 153–188 (1993).Google Scholar
  180. 180.
    Perez F, Menendez A, Dehal P, Quiros CF: Genomic structural differentiation in Solanum: comparative mapping of the A and E genomes. Theor Appl Genet 98: 1183–1193 (1999).Google Scholar
  181. 181.
    Price RA, Palmer JD, Al-Shehbaz IA: Systematic relationships of Arabidopsis: a molecular and morphological perspective. In: Somerville C, Meyerowitz E (eds), Arabidopsis, pp. 7–19. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1994).Google Scholar
  182. 182.
    Qiu Y-Q, Cho Y., Cox JC, Palmer JD: The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature 394: 671–674 (1998).Google Scholar
  183. 183.
    Qiu Y-Q, Palmer, JD: Mitochondrial genome evolution and land phylogeny. Am J Bot 84 (abstract): 113–114 (1996).Google Scholar
  184. 184.
    Qiu Y-Q, Palmer, JD: Phylogeny of early land plants: insights from genes and genomes. Trends Plant Sci 4: 26–30 (1998).Google Scholar
  185. 185.
    Quiros, CF: Molecular markers and their applications to genetics, breeding and the evolution of Brassica. J Jpn SocHort Sci 67: 1180–1185 (1998).Google Scholar
  186. 186.
    Quiros CF, Hu J, Truco MJ: DNA based marker Brassica maps. In: Phillips RL, Vasil IK (eds), DNA-Based Markers in Plants, pp. 199–222. Kluwer Academic Publishers, Dordrecht, Netherlands (1993).Google Scholar
  187. 187.
    Raubeson, LA Jansen RK: Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 255: 1697–1699 (1992).Google Scholar
  188. 188.
    Reeves PA, Olmstead RG: Evolution of novel morphological, ecological, and reproductive traits in a clade containing Antirrhinum. Am J Bot 85: 1047–1056 (1998).Google Scholar
  189. 189.
    Rice KA, Donoghue MJ, Olmstead RG: Analyzing large data sets: rbcL 500 revisited. Syst Biol 46: 554–563 (1997).Google Scholar
  190. 190.
    Rieseberg LH: Homoploid reticulate evolution in Helianthus (Asteraceae): evidence from ribosomal genes. Am J Bot 75: 753–766 (1991).Google Scholar
  191. 191.
    Rieseberg LH: The role of hybridization in evolution: old wine in new skins. Am J Bot 82: 944–953 (1995).Google Scholar
  192. 192.
    Rieseberg LH, Sinervo B, Linder CR, Ungerer MC, Arias DM: Role of gene interactions in hybrid speciation: evidence from ancient and experimental hybrids. Science 272: 741–745 (1996).Google Scholar
  193. 193.
    Rieseberg LH, Soltis DE: Phylogenetic consequences of cytoplasmic gene flow in plants. Evol Trends Plants 5: 65–84 (1991).Google Scholar
  194. 194.
    Rieseberg LH, Van Fossen C, Desroches A: Genomic reorganization accompanies hybrid speciation in wild sunflowers. Nature 375: 313–316 (1995).Google Scholar
  195. 195.
    Rodman JE: A taxonomic analysis of glucosinolateproducing plants, part 1: Phenetics. Syst Bot 16: 598–618 (1991).Google Scholar
  196. 196.
    Rodman JE: A taxonomic analysis of glucosinolateproducing plants, part 2: Cladistics. Syst Bot 16: 619–629 (1991).Google Scholar
  197. 197.
    Rodman JE, Karol KG, Price RA, Sytsma KJ: Molecules, morphology, and Dahlgren's expanded order Capparales. Syst Bot 21: 289–307 (1996).Google Scholar
  198. 198.
    Rodman JE, Price RA, Karol K, Conti E, Sytsma KJ, Palmer JD: Nucleotide sequences of the rbcL gene indicate monophyly of mustard oil plants. Ann Miss Bot Gard 80: 686–699 (1993).Google Scholar
  199. 199.
    Rodman JE, Soltis PS, Soltis DE, Sytsma KJ, Karol KG: Parallel evolution of glucosinolate biosynthesis inferred from congruent nuclear and plastid gene phylogenies. Am J Bot 85: 997–1006 (1998).Google Scholar
  200. 200.
    Rodrigo AG, Kelly-Borges M, Bergquist PR, Bergquist PL: A randomisation test of the null hypothesis that two cladograms are sample estimates of a parametric phylogenetic tree. NZ J Bot 31: 257–268 (1993).Google Scholar
  201. 201.
    Sanderson MJ, Doyle JJ: Reconstruction of organismal and gene phylogenies from data on multigene families: concerted evolution, homoplasy, and confidence. Syst Biol 41: 4–17 (1992).Google Scholar
  202. 202.
    Sanderson MJ, Wojciechowski MF: Diversification rates in a temperate legume clade: are there 'so many species' of Astragalus (Fabaceae)? Am J Bot 83: 1488- 1502.Google Scholar
  203. 203.
    Sang T, Crawford DJ, Stuessy TF: Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc Natl Acad Sci USA 92: 6813–6817 (1995).Google Scholar
  204. 204.
    Savolainen V, Chase MW, Morton CM, Hoot SB, Soltis DE, Bayer C, Fay MF, de Bruijn A, Sullivan S, Qiu Y-L: Phylogenetics of flowering plants based upon a combined analysis of plastid atpB and rbcL gene sequences. Syst Biol (in press).Google Scholar
  205. 205.
    Schilling EE: Phylogenetic analysis of Helianthus (Asteraceae) based on chloroplast DNA restriction site data. Theor Appl Genet 94: 925–933 (1997).Google Scholar
  206. 206.
    Schilling EE, Linder CR, Noyes RD, Rieseberg LH: Phylogenetic relationships in Helianthus (Asteraceae) based on nuclear ribosomal DNA internal transcribed spacer region sequence data. Syst Bot 23: 177–189 (1998).Google Scholar
  207. 207.
    Schilling EE, Panero JL: Phylogenetic reticulation in subtribe Helianthinae. Am J Bot 83: 939–948 (1996).Google Scholar
  208. 208.
    Schneider-Poetsch HA, Marx S, Kolukisaoglu H, Hanelt S, Braun B: Phytochrome evolution: phytochrome genes in ferns and mosses. Physiol Plant 91: 241–250 (1994).Google Scholar
  209. 209.
    Schwarz-Sommer Z, Hue I, Huijser P, Flor PJ, Hansen R, Tetens F, Lonnig W-E, Saedler H, Sommer H: Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNAbinding and autoregulation of its persistent expression throughout flower development. EMBO J 11: 251–263 (1992).Google Scholar
  210. 210.
    Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H: Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250: 931–936 (1990).Google Scholar
  211. 211.
    Seelanan T, Schnabel H, Wendel JF: Congruence and consensus in the cotton tribe. Syst Bot 22: 259–290 (1997).Google Scholar
  212. 212.
    Shoemaker R, Olson T, Kanazin V: Soybean genome organization: evolution of a legume genome. In: Gustafson JP, Flavell RB (eds), Genomes of Plants and Animals. 21st Stadler Genetics Symposium, pp. 139–150. Plenum Press, New York (1996).Google Scholar
  213. 213.
    Sinha NR, Kellogg EA: Parallelism and diversity in multiple origins of C4 photosynthesis in the grass family. Am J Bot 83: 1458–1470 (1996).Google Scholar
  214. 214.
    Soltis DE, Hibsch-Jetter C, Soltis PS, Chase MW, Farris JS: Molecular phylogenetic relationships among angiosperms: an overview based on rbcL and 18S rDNA sequences. In: Iwatsuki K, Raven PH (eds.), Evolution and Diversification of Land Plants, pp. 157–178. Springer-Verlag, New York (1997).Google Scholar
  215. 215.
    Soltis DE, Soltis PS: Molecular data and the dynamic nature of polyploidy. Crit Rev Plant Sci 12: 243–273 (1993).Google Scholar
  216. 216.
    Soltis DE, Soltis PS: The dynamic nature of polyploid genomes. Proc Natl Acad Sci USA 92: 8089–8091 (1995).Google Scholar
  217. 217.
    Soltis DE, Soltis PS: Choosing an approach and an appropriate gene for phylogenetic analysis. In: Soltis DE, Soltis PS, Doyle JJ (eds), Molecular Systematics of Plants II: DNA Sequencing, pp. 1–42. Kluwer Academic Publishers, Boston (1998).Google Scholar
  218. 218.
    Soltis DE, Soltis PS: Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14: 348–392 (1999).Google Scholar
  219. 219.
    Soltis DE, Soltis PS, ChaseME, Mort ME, Albach DC, Zanis M, Savolainen V, Hahn WH, Hoot SB, Fay MF, Axtell, M, Swensen SM, Nixon KC, Farris JS: Angiosperm phylogeny inferred from a combined data set of 18S rDNA, rbcL, and atpsequences. Bot J Linn Soc (submitted).Google Scholar
  220. 220.
    Soltis DE, Soltis PS, Morgan DR, Swensen SM, Mullin BC, Dowd JM, Martin PG: Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc Natl Acad Sci USA 92: 2647–2651 (1995).Google Scholar
  221. 221.
    Soltis DE, Soltis PS, Mort ME, Chase MW, Savolainen V, Hoot SB, Morton CM: Inferring complex phylogenies using parsimony: an empirical approach using three large DNA data sets for angiosperms. Syst Biol 47: 32–42 (1998).Google Scholar
  222. 222.
    Soltis DE, Soltis PS, Nickrent DL, Johnson LA, Hahn WJ, Hoot SB, Sweere JA, Kuzoff RK, Kron KA, Chase MW, Swensen SM, Zimmer EA, Chaw S-M, Gillespie LY, Kress WJ, Sytsma KJ: Angiosperm phylogeny inferred from 18S ribosomal DNA sequences. Ann Miss Bot Gard 84: 1–49 (1997).Google Scholar
  223. 223.
    Soltis PS, Plunkett GM, Novak SJ, Soltis DE: Genetic variation in Tragopogon species: additional origins of the allotetraploids T. mirus and T. miscellus (Compositae). Am J Bot 82: 1329–1341 (1995).Google Scholar
  224. 224.
    Soltis PS, Soltis DS: Molecular evolution of 18S rDNA in angiosperms: implications for character weighting in phylogenetic analysis. In: Soltis DE, Soltis PS, Doyle JJ (eds), Molecular Systematics of Plants II: DNA Sequencing, pp. 188–211. Kluwer Academic Publishers, Boston (1998).Google Scholar
  225. 225.
    Soltis PS, Soltis DE, Wolf PG, Nickrent DL, Chaw S-M, Chapman RL: The phylogeny of land plants inferred from 18S rDNA sequences: pushing the limits of rDNA signal? Mol Biol Evol (in press).Google Scholar
  226. 226.
    Song KM, Lu P, Tang K, Osborn TC: Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92: 7719–7723 (1995).Google Scholar
  227. 227.
    Song KM, Osborn, TC: Polyphyletic origins of Brassica napus: new evidence based on organelle and and nuclear RFLP analyses. Genome 35: 992 (1993).Google Scholar
  228. 228.
    Song KM, Osborn TC, Williams PH: Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 1. Genome evolution of diploid and amphidiploid species. Theor Appl Genet 75: 784–794 (1988).Google Scholar
  229. 229.
    Soreng RJ, Davis JI: Phylogenetics and character evolution in the grass family (Poaceae): simultaneous analysis of morphological and chloroplast DNA restriction site data sets. Bot Rev 64: 1–85 (1998).Google Scholar
  230. 230.
    Spooner DM, Sytsma KJ: Reexamination of series relationships of Mexican and Central American wild potatoes (Solanum sect. Petota): evidence from chloroplast DNA restriction site variation. Syst Bot 17: 432–448 (1992).Google Scholar
  231. 231.
    Spooner DM, Sytsma KJ, Conti E: Chloroplast DNA evidence for genome differentiation in wild potatoes (Solanum sect. Petota: Solanaceae). Am J Bot 78: 1354–1366 (1991).Google Scholar
  232. 232.
    Spooner DM, Anderson GJ, Jansen RK: Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes, and pepinos (Solanaceae). Am J Bot 80: 676–688 (1993).Google Scholar
  233. 233.
    Sprent JI, Raven JR: Evolution of nitrogen-fixing symbioses. In: Stacy G, Burris RH, Evans HJ (eds), Biological Nitrogen Fixation, pp. 461–496. Chapman & Hall, New York (1992).Google Scholar
  234. 234.
    Stefanovic S, Jager M, Deutsch J, Broutin J, Masselot M: Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. Am J Bot 85: 688–697 (1998).Google Scholar
  235. 235.
    Stebbins GL: Variation and Evolution in Plants. Columbia University Press, New York (1950).Google Scholar
  236. 236.
    Stebbins GL: Chromosomal Evolution in Higher Plants. Edward Arnold, London (1971).Google Scholar
  237. 237.
    Strauss SH, Doerksen AH: Restriction fragment analysis of pine phylogeny. Evolution 44: 1081–1096 (1990).Google Scholar
  238. 238.
    Sullivan, J: Combining data with different distributions of among-site rate variation. Syst Biol 45: 375–380 (1996).Google Scholar
  239. 239.
    Swensen SM: The evolution of actinorhizal symbioses: evidence for multiple origins of the symbiotic association. Am J Bot 83: 1503–1512 (1996).Google Scholar
  240. 240.
    Swofford DL: When are phylogeny estimates from molecular and morphological data incongruent? In: Miyamoto MM, Cracraft J (eds), Phylogenetic Analysis of DNA Sequences, pp. 295–333. Oxford University Press, New York (1991).Google Scholar
  241. 241.
    Swofford DL: Phylogenetic Analysis Using Parsimony* (PAUP*), version 4.0. Sinauer Associates, Sunderland, MA (1998).Google Scholar
  242. 242.
    Takhtajan A: System of Magnoliophyta. Academy of Sciences U.S.S.R., St. Petersburg (1987).Google Scholar
  243. 243.
    Takhtajan A: Diversity and Classification of Flowering Plants. Columbia University Press, New York (1997).Google Scholar
  244. 244.
    Tanksley SD, Bernatzky R, Lapitan NL, Prince JP: Conservation of gene repertoire but not gene order in pepper and tomato. Proc Natl Acad Sci USA 84: 6419–6423 (1988).Google Scholar
  245. 245.
    Thorne RF: Classification and geography of the flowering plants. Bot Rev 58: 225–348 (1992).Google Scholar
  246. 246.
    U N: Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7: 389 (1935).Google Scholar
  247. 247.
    Vaillancourt RE, Weeden NF, Bruneau A, Doyle JJ: Chloroplast DNA phylogeny of Old World Vigna (Leguminosae). Syst Bot 18: 642–651 (1993).Google Scholar
  248. 248.
    Wagner WH: Biosystematics and evolutionary noise. Taxon 19: 146–151 (1970).Google Scholar
  249. 249.
    Wagstaff SJ, Olmstead RG: Phylogeny of Labiatae and Verbenaceae inferred from rbcL sequences. Syst Bot 22: 165–177 (1997).Google Scholar
  250. 250.
    Warwick SI, Black LD: Molecular systematics of Brassica and allied genera (subtribe Brassicinae, Brassicaceae): chloroplast genome and cytodeme congruence. Theor Appl Genet 82: 81–92 (1991).Google Scholar
  251. 251.
    Waters ER, Vierling E: The diversification of plant cytosolic small heat shock proteins preceded the divergence of mosses. Mol Biol Evol 16: 127–139 (1999).Google Scholar
  252. 252.
    Weeden NF, Muehlbauer FJ, Ladizinsky G: Extensive conservation of linkage relationships between pea and lentil genetic maps. J Hered 83: 123–129 (1992).Google Scholar
  253. 253.
    Wendel JF: New World tetraploid cottons contain Old World cytoplasm. Proc Natl Acad Sci USA 86: 4132–4136 (1989).Google Scholar
  254. 254.
    Wendel JF, Doyle JJ: Phylogenetic incongruence: window into genome history and molecular evolution. In: Soltis DE, Soltis PS, Doyle JJ (eds), Molecular Systematics of Plants II: DNA Sequencing, pp. 265–296. Kluwer Academic Publishers, Boston (1998).Google Scholar
  255. 255.
    Wendel JF, Olson PD, Steward JMcD: Genetic diversity, introgression, and independent domestication of Old World cultivated cottons. Am J Bot 76: 1795–1806 (1989).Google Scholar
  256. 256.
    Wendel JF, Schnabel A, Seelanan T: Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci USA 92: 280–284 (1995).Google Scholar
  257. 257.
    Wendel JF, Small RL, Cronn, RC, Brubaker, CL: Genes, jeans, and genomes: reconstructing the history of cotton. In: Proceedings of the International Organization of Plant Biosystematists, Amsterdam (in press).Google Scholar
  258. 258.
    White S, Doebley J: Genes and genomes and the origins of maize. Trends Genet 14: 327–332 (1998).Google Scholar
  259. 259.
    Whitkus R, Doebley J, Lee M: Comparative genome mapping of sorghum and maize. Genetics 132: 1119–1130. (1993).Google Scholar
  260. 260.
    Woese CR: Bacterial evolution. Microbiol Rev 51: 221–271 (1987).Google Scholar
  261. 261.
    Woese CR., Kandler O, Wheelis ML: Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87: 4576–4579 (1990).Google Scholar
  262. 262.
    Wolf PG: Evaluation of atpB nucleotide sequences for phylogenetic studies of ferns and other pteridophytes. Am J Bot 84: 1429–1440 (1997).Google Scholar
  263. 263.
    Wolf PG, Pryer KM, Smith AR, Hasebe M: Phylogenetic studies of extant pteridophytes. In: Soltis DE, Soltis PS, Doyle JJ (eds), Molecular Systematics of Plants II: DNA Sequencing, pp. 541–556. Kluwer Academic Publishers, Boston (1998).Google Scholar
  264. 264.
    Wright RJ, Thaxton PM, El-Zik KM, Paterson AH: Dsubgenome bias of Xcm resistance genes in tetraploid Gossypium (cotton) suggests that polyploid formation has created novel avenues for evolution. Genetics 149: 1987–1996 (1998).Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • E. Douglas Soltis
    • 1
  • Pamela S. Soltis
    • 1
  1. 1.Department of BotanyWashington State UniversityPullmanUSA

Personalised recommendations