Plant Molecular Biology

, Volume 42, Issue 1, pp 251–269 | Cite as

Transposable element contributions to plant gene and genome evolution

  • Jeffrey L. Bennetzen


Transposable elements were first discovered in plants because they can have tremendous effects on genome structure and gene function. Although only a few or no elements may be active within a genome at any time in any individual, the genomic alterations they cause can have major outcomes for a species. All major element types appear to be present in all plant species, but their quantitative and qualitative contributions are enormously variable even between closely related lineages. In some large-genome plants, mobile DNAs make up the majority of the nuclear genome. They can rearrange genomes and alter individual gene structure and regulation through any of the activities they promote: transposition, insertion, excision, chromosome breakage, and ectopic recombination. Many genes may have been assembled or amplified through the action of transposable elements, and it is likely that most plant genes contain legacies of multiple transposable element insertions into promoters. Because chromosomal rearrangements can lead to speciating infertility in heterozygous progeny, transposable elements may be responsible for the rate at which such incompatibility is generated in separated populations. For these reasons, understanding plant gene and genome evolution is only possible if we comprehend the contributions of transposable elements.

genome structure mutation repetitive DNA retroelements transposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ananiev EV, Riera-Lizarazu O, Rines HW, Phillips RL: Oatmaize chromosome addition lines: a new system for mapping the maize genome. Proc Natl Acad Sci USA 94: 3524–3528 (1997).Google Scholar
  2. 2.
    Avramova Z, SanMiguel P, Georgieva E, Bennetzen JL: Matrix attachment regions and transcribed sequences within a long chromosomal continuum containing maize adh1. Plant Cell 7: 1667–1680 (1995).Google Scholar
  3. 3.
    Avramova Z, Tikhonov A, Chen M, Bennetzen JL: Matrix attachment regions and structural collinearity in the genomes of two grass species. Nucl Acids Res 26: 761–767 (1998).Google Scholar
  4. 4.
    Benjamin HW, Kleckner N: Intramolecular transposition by Tn10. Cell 59: 373–383 (1989).Google Scholar
  5. 5.
    Bennett MD: Variation in genome form in plants and its ecological implications. New Phytol 106 (Suppl): 177–200 (1987).Google Scholar
  6. 6.
    Bennett MD, Leitch IJ: Nuclear DNA amounts in angiosperms: 583 new estimates. Ann Bot 80: 169–196 (1997).Google Scholar
  7. 7.
    Bennetzen JL: The regulation of Mutator function and Mu1 transposition. In: Freeling M (Ed.) Plant Genetics, pp. 343–353. Alan R. Liss, New York (1985).Google Scholar
  8. 8.
    Bennetzen JL: The contributions of retroelements to plant genome organization, function and evolution. Trends Microbiol 4: 347–353 (1993).Google Scholar
  9. 9.
    Bennetzen JL: The Mutator transposable element system of maize. Curr Top Microbiol Immunol 204: 195–229 (1996).Google Scholar
  10. 10.
    Bennetzen JL, Brown WE, Springer PS: The state of DNA modification within and flanking maize transposable elements. In: Nelson OE (ed), Plant Transposable Elements, pp. 237–250. Plenum, New York (1988).Google Scholar
  11. 11.
    Bennetzen JL, Kellogg EA: Do plants have a one-way ticket to genomic obesity? Plant Cell 1509–1514 (1997).Google Scholar
  12. 12.
    Bennetzen JL, Schrick K, Springer PS, Brown WE, San-Miguel P: Active maize genes are unmodified and flanked by diverse classes of modified, highly repetitive DNA. Genome 37: 565–576 (1994).Google Scholar
  13. 13.
    Bennetzen JL, Springer PS: The generation of Mutator transposable element subfamilies in maize. Theor Appl Genet 87: 657–667 (1994).Google Scholar
  14. 14.
    Bennetzen JL, Swanson J, Taylor WC, Freeling M: An insertion in the first intron of maize Adh1 affects transcript levels: cloning of progenitor and mutant alleles. Proc Natl Acad Sci USA 81: 4125–4128 (1984).Google Scholar
  15. 15.
    Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, 62 others: Analysis of 1.9 Mb of contiguous DNA sequence from chromosome 4 of Arabidopsis thaliana. Nature 391: 485–488 (1998).Google Scholar
  16. 16.
    Biradar DP, Rayburn AL: Heterosis and nuclear DNA content in maize. Heredity 71: 300–304 (1993).Google Scholar
  17. 17.
    Bonas U, Sommer H, Saedler H: The 17-kb Tam1 element of Antirrhinum majus induces a 3-bp duplication upon integration into the chalcon synthase gene. EMBO J 3: 1015–1019 (1984).Google Scholar
  18. 18.
    Bureau TE, Wessler SE: Mobile inverted-repeat elements of the Tourist family are associated with the genes ofmany plant genomes. Proc Natl Acad Sci USA 91: 1411–1415 (1994).Google Scholar
  19. 19.
    Bureau TE, White SE, Wessler SR: Transduction of a cellular gene by a plant retroelement. Cell 77: 479–480 (1994).Google Scholar
  20. 20.
    Chen C-H, Oishi KK, Kloeckener-Gruissem B, Freeling M: Organ-specific expression of maize Adh1 is altered after a Mu transposon insertion. Genetics 117: 109–116 (1987).Google Scholar
  21. 21.
    Chen J, Greenblatt IM, Dellaporta SL: Transposition of Ac from the P locus of maize into unreplicated chromosomal sites. Genetics 117: 109–116 (1987)Google Scholar
  22. 22.
    Cone KC, Schmidt RJ, Burr B, Burr FA: Advantages and limitations of using Spm as a transposon tag. In: Nelson OE (ed), Plant Transposable Elements, pp. 149–159. Plenum, New York (1988).Google Scholar
  23. 23.
    Cost GJ, Boeke JD: Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. Biochemistry 22: 18081–18093 (1998).Google Scholar
  24. 24.
    Coulondre C, Miller JH, Farabaugh PJ, Gilbert W:Molecular basis of base substitution hotspots in Escherichia coli. Nature 274: 775–780 (1978).Google Scholar
  25. 25.
    Cresse AD, Hulbert SH, Brown WE, Lucas JR, Bennetzen JL: Mu1-related transposable elements of maize preferentially insert into low copy number DNA. Genetics 140: 315–324 (1995).Google Scholar
  26. 26.
    Danilevskaya ON, Arkhipova JR, Traverse KL, Pardue ML: Promoting in tandem: the promoter for telomere transposon HeT-A and implications for the evolution of retroviral LTRs. Cell 88: 647–655 (1997).Google Scholar
  27. 27.
    Dellaporta SL, Chomet PS: The action of maize controlling elements. In: Hohn B, Dennis ES (eds), Plant Gene Research: Genetic Flux in Plants, pp. 169–216, Springer-Verlag, Berlin (1985).Google Scholar
  28. 28.
    Doolittle WF, Sapienza C: Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601–603 (1980).Google Scholar
  29. 29.
    Dooner HK, Martinez-Ferez IM: Recombination occurs uniformly within the bronze gene, a meiotic recombination hotspot in the maize genome. Plant Cell 9: 1633–1645 (1997).Google Scholar
  30. 30.
    Doring J-P, Starlinger P: Molecular genetics of transposable elements in plants. Annu Rev Genet 20: 175–200 (1986).Google Scholar
  31. 31.
    Drouin G, Dover GA: A plant processed pseudogene. Nature 328: 557–558 (1987).Google Scholar
  32. 32.
    Edwards KJ, Veuskens J, Rawles H, Daly A, Bennetzen JL: Characterization of four dispersed repetitive DNA sequences in Zea mays and their use in constructing contiguous DNA fragments using YAC clones. Genome 39: 811–817 (1996).Google Scholar
  33. 33.
    Eickbush TH: Transposing without ends: the non-LTR retrotransposable elements. New Biol 4: 430–440 (1992).Google Scholar
  34. 34.
    Emerson RA: The inheritance of a recurring somatic variation in variegated ears of maize. Am Nat 48: 87–115 (1914).Google Scholar
  35. 35.
    Engels WR, Johnson-Schilz DM, Eggleston WB, Sved J: High-frequency P element loss in Drosophila is homolog dependent. Cell 62: 515–525 (1990).Google Scholar
  36. 36.
    English J, Harrison K, Jones JDG: A genetic analysis of DNA sequence requirements for Dissociation state-I activity in tobacco. Plant Cell 5: 501–514 (1993).Google Scholar
  37. 37.
    Fedoroff N, Wessler S, Shure M: Isolation of the transposable controlling elements Ac and Ds. Cell 35: 243–251 (1983).Google Scholar
  38. 38.
    Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A: Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucl Acids Res 20: 3639–3644 (1992).Google Scholar
  39. 39.
    Flavell AJ, Pearce SR, Kumar A: Plant transposable elements and the genome. Curr Opin Genet Dev 4: 838–844 (1994).Google Scholar
  40. 40.
    Flavell RB, Bennett MD, Smith JB, Smith DB: Genome size and proportion of repeated nucleotide sequence DNA in plants. Biochem Genet 12: 257–269 (1974).Google Scholar
  41. 41.
    Gale MD, Devos KM: Plant comparative genetics after 10 years. Science 282: 656–659 (1998).Google Scholar
  42. 42.
    Gilbert W: Introns and exons: Playgrounds of evolution. In: Axel R, Maniatis T, Fox CF (eds), Eucaryotic Gene Regulation, pp. 1–12. Academic Press, New York (1979).Google Scholar
  43. 43.
    Giroux MJ, Clancy M, Baier J, Ingham L, McCarty D, Hannah LC: De novo synthesis of an intron by the maize transposable element Dissociation. Proc Natl Acad Sci USA 91: 12150–12154 (1994).Google Scholar
  44. 44.
    Gross D, Garrard W: Poising chromatin for transcription. Trends Biochem Sci 12: 293–297 (1987).Google Scholar
  45. 45.
    Grandbastien M-A: Retroelements in higher plants. Trends Genet 8: 103–108 (1992).Google Scholar
  46. 46.
    Grandbastien M-A: Activations of plant retrotransposons under stress conditions. Trends Plant Sci 3: 181–187 (1998).Google Scholar
  47. 47.
    Green B, Walko R, Hake S: Mutator insertions in an intron of the maize knotted-1 gene result in dominant suppressible mutations. Genetics 138: 1275–1285 (1994).Google Scholar
  48. 48.
    Greenblatt IM: A chromosome replication pattern deduced from pericarp phenotypes resulting from movements of the transposable element, Modulator, in maize. Genetics 108: 471–485 (1984).Google Scholar
  49. 49.
    Greenblatt IM, Brink RA: Twin mutations in medium variegated pericarp maize. Genetics 47: 489–501 (1962).Google Scholar
  50. 50.
    Hehl R, Nacken W, Krause A, Saedler H, Sommer H: Structural analysis of Tam3, a transposable element from Antirrhinum majus, reveals homologies to the Ac element from maize. Plant Mol Biol 16: 369–371 (1991).Google Scholar
  51. 51.
    Heslop-Harrison JS, Murata M, Ogura Y, Schwarzacher T, Motoyoshi F: Polymorphisms and genomic organization of repetitive DNA from centromeric regions of Arabidopsis chromosomes. Plant Cell 11: 31–42 (1999).Google Scholar
  52. 52.
    Hirochika H: Activation of tobacco retrotransposons during tissue culture. EMBO J 12: 2521–2528 (1993).Google Scholar
  53. 53.
    Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M: Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93: 7783–7788 (1996).Google Scholar
  54. 54.
    Hollick JB, Dorweiler JE, Chandler VL: Paramutation and related allelic interactions. Trends Genet 13: 302–308 (1997).Google Scholar
  55. 55.
    Hu W, Das OP, Messing J: Zeon-l, a member of a new maize retrotransposon family. Mol Gen Genet 248: 471–480 (1995)Google Scholar
  56. 56.
    Jiang J, Nasuda S, Dong F, Scherrer CW, Woo S-S, Wing RA, Gill BS, Ward DC: A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc Natl Acad Sci USA 93: 14210–14213 (1996).Google Scholar
  57. 57.
    Jin Y-K, Bennetzen JL: Structure and coding properties of Bs1, a maize retrovirus-like transposon. Proc Natl Acad Sci USA 86: 6235–6239 (1989).Google Scholar
  58. 58.
    Jin Y-K, Bennetzen JL: Integration and nonrandom mutation of a plasma membrane proton ATPase gene fragment within the Bs1 retroelement of maize. Plant Cell 6: 1177–1186 (1994).Google Scholar
  59. 59.
    Johns MA, Mottinger J, Freeling M: A low copy number, Copia-like transposon in maize. EMBO J 4: 1093–1102 (1985).Google Scholar
  60. 60.
    Kidwell MG, Kidwell JF, Sved JA: Hybrid dysgenesis in Drosophila melanogaster: syndrome of aberrant traits including mutation, sterility, and male recombination. Genetics 86: 813–833 (1977).Google Scholar
  61. 61.
    Kim H-Y, Schiefelbein JW, Raboy V, Furtek DB, Nelson OE Jr: RNA splicing permits expression of a maize gene with a defective Suppressor-mutator transposable element insertion in an exon. Proc Natl Acad Sci USA 84: 5863–5867 (1987).Google Scholar
  62. 62.
    Kleckner N: Regulation of transposition in bacteria. Annu Rev Cell Biol 6: 297–327 (1990).Google Scholar
  63. 63.
    Kumar A, Bennetzen JL: Plant retrotransposons. Annu Rev Genet 33, in press.Google Scholar
  64. 64.
    Kunze R: The maize transposable element Activator (Ac). In: Saedler H, Gierl A (eds), Transposable Elements, pp. 161–194. Springer-Verlag, Berlin (1996).Google Scholar
  65. 65.
    Kunze R, Saedler H, Lonnig WE: Plant transposable elements. Adv Bot Res 27: 331–470 (1997).Google Scholar
  66. 66.
    Laten H, Majumdar A and Gaucher EA: SIRE-1, a copia/Ty1-like retroelement from soybean, encodes a retroviral envelope-like protein. Proc Natl Acad Sci USA 95: 6897–6902 (1998).Google Scholar
  67. 67.
    Levy AA, Walbot V: Molecular analysis of the loss of somatic instability in the bz2:mu1 allele of maize. Mol Gen Genet 229: 147–151 (1991).Google Scholar
  68. 68.
    Lim JK, Simmons JM: Gross chromosome rearrangements mediated by transposable elements in Drosophila melanogaster. BioEssays 16: 269–273 (1994).Google Scholar
  69. 69.
    Llaca V, Messing J: Amplicons of maize zein genes are conserved within genic but expanded and constricted in intergenic regions. Plant J 15: 211–20 (1998).Google Scholar
  70. 70.
    Loguercio LL, Wilkins TA: Structural analysis of a hmg-coA reductase pseudogene: insights into evolutionary processes affecting the hmgr gene family in allotetraploid cotton (Gossypium hirsutum L.). Curr Genet 34: 241–249 (1998).Google Scholar
  71. 71.
    Maraia R: The Impact of Short Interspersed Elements (SINEs) on the Host Genome. Springer-Verlag, New York (1995).Google Scholar
  72. 72.
    Marillonnet S, Wessler SR: Retrotransposon insertion into the maize waxy gene results in tissue-specific RNA processing. Plant Cell 9: 967–978 (1997).Google Scholar
  73. 73.
    Martienssen RA: Epigenetic phenomena: paramutation and gene silencing in plants. Curr Biol 6: 810–813 (1996).Google Scholar
  74. 74.
    Martienssen RA, Barkan A, Taylor WC, Freeling M: Somatically heritable switches in the DNA modification of Mu transposable elements monitored with a suppressible mutant in maize. Genes Dev 4: 331–343 (1989).Google Scholar
  75. 75.
    Masson P, Surovsky R, Kingsbury J, Fedoroff NV: Genetic and molecular analysis of the Spm-dependent a-m2 alleles of the maize a locus. Genetics 177: 117–137 (1987).Google Scholar
  76. 76.
    Matsuoka Y, Tsunewaki K: Evolutionary dynamics of Ty1-copia group retrotransposons in grasses shown by reverse transcriptase domain analysis. Mol Biol Evol 16: 208–217 (1999).Google Scholar
  77. 77.
    Matzke MA, Matzke AJ: Epigenetic silencing of plant transgenes as a consequence of diverse cellular defence responses. Cell Mol Life Sci 54: 94–103 (1998).Google Scholar
  78. 78.
    Matzke MA, Matzke AJ, Eggleston W: Transgene silencing and paramutation: a common response to invasive DNA? Trends Plant Sci 1: 382–388 (1996).Google Scholar
  79. 79.
    Matzke MA, Primig M, Trnovsky J, Matzke AJ: Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J 8: 643–649 (1989).Google Scholar
  80. 80.
    McClintock B: The fusion of broken ends of chromosomes following nuclear fusion. Proc Natl Acad Sci USA 28: 458–463 (1942).Google Scholar
  81. 81.
    McClintock B: Maize genetics. Carnegie Inst Washington Year Book 45: 176–186 (1946).Google Scholar
  82. 82.
    McClintock B: Mutable loci in maize. Carnegie Inst Washington Year Book 47: 155–169 (1948)Google Scholar
  83. 83.
    McClintock B: Mutable loci in maize. Carnegie Inst Washington Year Book 48: 142–154 (1949).Google Scholar
  84. 84.
    McClintock B: Mutable loci in maize. Carnegie Inst Washington Year Book 49: 157–167 (1950).Google Scholar
  85. 85.
    McClintock B: Topographical relations between elements of control systems in maize. Carnegie Inst Washington Year Book 61: 448–461 (1962).Google Scholar
  86. 86.
    McClintock B: The significance of responses of the genome to challenge. Science 226: 792–801 (1984).Google Scholar
  87. 87.
    Miller JT, Dong F, Jackson SA, Song J, Jiang J: Retrotransposon-related DNA sequences in the centromeres of grass chromosomes. Genetics 150: 1615–1623 (1998).Google Scholar
  88. 88.
    O'Neill RJW, O'Neill MJ, Graves JAM: Undermethylation associated with retroelement activation and chromosome remodeling in an interspecific mammalian hybrid. Nature 393: 68–72 (1998).Google Scholar
  89. 89.
    Orgel LE, Crick FHC: Selfish DNA: the ultimate parasite. Nature 284: 604–607 (1980).Google Scholar
  90. 90.
    Palmgren MG: Capturing of host DNA by a plant retroelement: Bs1 encodes plasma membrane HC-ATPase domains. Plant Mol Biol 25: 137–140 (1994).Google Scholar
  91. 91.
    Panstruga R, Buschges R, Piffanelli P, Schulze-Lefert P: A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome. Nucl Acids Res 26: 1056–1062 (1998).Google Scholar
  92. 92.
    Pardue ML, Danilevskaya ON, Traverse KL, Lowenhaupt K: Evolutionary links between telomeres and transposable elements. Genetica 100: 73–84 (1997).Google Scholar
  93. 93.
    Peacock WJ, Dennis ES, Gerlach WL, Sachs MM, Schwartz D: Insertion and excision of Ds controlling elements in maize. Cold Spring Harbor Symp Quant Biol 49: 347–354 (1984).Google Scholar
  94. 94.
    Pearce SR, Pich U, Harrison G, Flavell AJ, Heslop-Harrison JS, Schubert I, Kumar A: The Ty1-copia group retrotransposons of Allium cepa are distributed throughout the chromosomes but are enriched in the terminal heterochromatin. Chrom Res 4: 357–364 (1996).Google Scholar
  95. 95.
    Pelissier T, Tutois S, Deragon JM, Tourmente S, Genestier S, Picard G: Athila, a new retroelement from Arabidopsis thaliana. Plant Mol Biol 29: 441–452 (1995).Google Scholar
  96. 96.
    Pelissier T, Tutois S, Tourmente S, Deragon JM, Picard G: DNA regions flanking the major Arabidopsis thaliana satellite are principally enriched in Athila retroelement sequences. Genetica 97: 141–151 (1996).Google Scholar
  97. 97.
    Peschke VM, Phillips RL, Gengenbach BG: Discovery of transposable element activity among progeny of tissue culture-derived maize plants. Science 238: 804–807 (1987).Google Scholar
  98. 98.
    Plasterk RHA, Groenen TM: Targeted alterations of the Caenorhabditis elegans genome by transgene instructed DNA double-strand break repair following Tc1 excision. EMBO J 11: 287–290 ((1992).Google Scholar
  99. 99.
    Pouteau S, Grandbastien M-A, Boccara M: Microbial elicitors of plant defence responses activate transcription of a retrotransposon. Plant J 5: 535–542 (1994).Google Scholar
  100. 100.
    Pouteau S, Spielmann A, Meyer C, Grandbastien M-A, Caboche M: Effects of Tnt1 tobacco retrotransposon insertion on target gene transcription. Mol Gen Genet 228: 233–239 (1991).Google Scholar
  101. 101.
    Presting GG, Malysheva L, Fuchs J, Schubert I: A TY3/GYPSY retrotransposon-like sequence localises to the centromeric region of cereal chromosomes. Plant J 16: 721–728 (1998).Google Scholar
  102. 102.
    Price HJ: Nuclear DNA content variation within angiosperm species. Evol Trends Plants 2: 53–60 (1988).Google Scholar
  103. 103.
    Richards EJ, Ausubel FM: Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53: 127–136 (1988).Google Scholar
  104. 104.
    SanMiguel P, Bennetzen JL: Evidence that a recent increase in maize genome size was caused by the massive ampli-fication of intergene retrotransposons. Ann Bot 82: 37–44 (1998).Google Scholar
  105. 105.
    SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL: The paleontology of intergene retrotransposons of maize. Nature Genet 20: 43–45 (1998).Google Scholar
  106. 106.
    SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen, JL: Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765–768 (1996).Google Scholar
  107. 107.
    Schmid CW: Alu: Structure, origin, evolution, significance and function of one tenth of human DNA. Prog Nucl Acid Res Mol Biol 53: 283–319 (1996).Google Scholar
  108. 108.
    Schmidt T, Kubis S, Heslop-Harrison JS: Analysis and chromosomal location of retrotransposons in sugar beet (Beta vulgaris): LINEs and Ty1-copia-like elements as major components of the genome. Chrom Res 3: 335–345 (1995).Google Scholar
  109. 109.
    Sturtevant AH, Morgan TH: Reverse mutation of the bar gene correlated with crossing over. Science 57: 746–747 (1923).Google Scholar
  110. 110.
    Talbert LE, Chandler, VL: Characterization of a highly conserved sequence related to Mutator transposable elements in maize. Mol Biol Evol 5: 519–529 (1988).Google Scholar
  111. 111.
    Tikhonov AP, SanMiguel PJ, Nakajima Y, Gorenstein ND, Bennetzen JL, Avramova, Z: Collinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc Natl Acad Sci. USA 96: 7409–7414 (1999).Google Scholar
  112. 112.
    Tsubota SI, Rosenberg D, Szostak H, Rubin D Schedl P: The cloning of the Bar region and the B breakpoint in Drosophila melanogaster: evidence for a transposon-induced rearrangement. Genetics 122: 881–890 (1989).Google Scholar
  113. 113.
    Turcich MP, Bokharri-Riza A, Hamilton DA, He CP, Messier W, Stewart CB, Mascarenhas JP: PREM-2, a copia-type retroelement in maize is expressed preferentially in early microspores. Sexual Plant Reprod 9: 65–74 (1996).Google Scholar
  114. 114.
    Vicient CM, Suoniemi A, Anamthawat-Jonsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH: Retrotransposon BARE-1 and its role in genome evolution in Hordeum. Plant Cell, in press (1999).Google Scholar
  115. 115.
    Voytas DF, Cummings MP, Konieczny A, Ausubel FM, Rodermel SR: Copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA 89: 7124–7128 (1992).Google Scholar
  116. 116.
    Walbot V: Reactivation of the Mutator transposable element system following gamma irradiation of seed. Mol Gen Genet 212: 259–264 (1988).Google Scholar
  117. 117.
    Walbot V, Chandler V, Taylor L: Alterations in the Mutator transposable element family of Zea mays. In: Freeling M (ed), Plant Genetics, pp. 333–342. Alan R. Liss, New York (1985).Google Scholar
  118. 118.
    Weil CF, Wessler SR: Molecular evidence that chromosome breakage by Ds elements is caused by aberrant transposition. Plant Cell 5: 512–522 (1993).Google Scholar
  119. 119.
    Wessler SR: The splicing of transposable elements and its role in intron evolution. Genetica 86: 295–305 (1992).Google Scholar
  120. 120.
    Wessler SR, Baran G, Varagona M: The maize transposable element Ds is spliced from RNA. Science 237: 916–918 (1987).Google Scholar
  121. 121.
    Wessler SR, Bureau TE, White SE: LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev 5: 814–821 (1995).Google Scholar
  122. 122.
    White SE, Habera LF, Wessler SR: Retrotransposons in the flanking regions of normal plant genes: a role of copia-like elements in the evolution of gene structure and expression. Proc Natl Acad Sci USA 91: 11792–11796 (1994).Google Scholar
  123. 123.
    Wilke CM, Adams J: Fitness effects of Ty transposition in Saccharomyces cerevisiae. Genetics 131: 31–42 (1992).Google Scholar
  124. 124.
    Williamson VM: Transposable elements in yeast. Int Rev Cytol 83: 1–25 (1983).Google Scholar
  125. 125.
    Wright DA, Voytas DF: Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins. Genetics 149: 603–715 (1998).Google Scholar
  126. 126.
    Xiong Y, Eickbush TH: Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9: 3353–3362 (1990).Google Scholar
  127. 127.
    Xu X, Hsia A-P, Zhang L, Nikolau BJ, Schnable PS: Meiotic recombination break points resolve at high rates at the 50 end of a maize coding sequence. Plant Cell 7: 2151–2161 (1995).Google Scholar
  128. 128.
    Yu H-G, Hiatt EN, Chan A, Sweeney M, Dawe RK: Neocentromere-mediated chromosome movement in maize. J Cell Biol 139: 831–840 (1997).Google Scholar
  129. 129.
    Zou S, Voytas DF: Silent chromatin determines target preference of the Saccharomyces retrotransposon Ty5. Proc Natl Acad Sci USA 94: 7412–7416 (1997).Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Jeffrey L. Bennetzen
    • 1
  1. 1.Department of Biological SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations