Advertisement

Plant Molecular Biology

, Volume 42, Issue 1, pp 205–224 | Cite as

Hybridization, introgression, and linkage evolution

  • Loren H. Rieseberg
  • Stuart J.E. Baird
  • Keith A. Gardner
Article

Abstract

Genetic mapping methods provide a unique opportunity to study the interactions of differentiated genes and genomes in a hybrid genetic background. After a brief discussion of theoretical and analytical concerns, we review the application of these methods to a wide range of evolutionary issues. Map-based studies of experimental hybrids indicate that most postzygotic reproductive barriers in plants are polygenic and that the expression of extreme or novel traits in segregating hybrids (transgressive segregation) results from the complementary action of divergent parental alleles. However, genetic studies of hybrid vigor do not concur in their interpretations of the relative roles of dominance, overdominance, and epistasis. Map-based studies of natural hybrids are much rarer, but the few existing studies confirm the polygenic basis of postzygotic barriers and demonstrate the utility of genetic linkage for detecting cryptic introgression. In addition, studies of experimental and natural hybrid lineages provide compelling evidence that homoploid hybrid speciation has occurred in nature, and that it represents a rapid and repeatable mode of speciation. Data further indicate that this mode is facilitated by strong fertility selection and high chromosomal mutation rates. We recommend that future studies of hybrid genomes focus on natural hybrids, not only because of the paucity of data in this area, but also because of the availability of highly recombinant hybrid genotypes in hybrid zones. Of particular value will be studies of long-lived or difficult-to-propagate organisms, which previously have not been amenable to genetic study.

genetic mapping graphical genotypes hybridization introgression junction theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson E: Introgressive Hybridization. John Wiley, New York (1949).Google Scholar
  2. 2.
    Arnold ML: Natural Hybridization and Evolution. Oxford University Press, Oxford (1997).Google Scholar
  3. 3.
    Avise JC: Pleistocene phylogeographic effects on avian populations and the speciation process. Proc R Soc Lond B 265: 457–463 (1998).Google Scholar
  4. 4.
    Backes G, Graner A, Foroughi-Wehr B, Fischbeck G, Wenzel G, Johoor A: Localization of quantitative trait loci (QTL) for agronomic important characters by the use of RFLP map in barley (Hordeum vulgare L.). Theor Appl Genet 90: 294–302 (1995).Google Scholar
  5. 5.
    Baird SJE: A simulation study of multilocus clines. Evolution 49: 1038–1045 (1995).Google Scholar
  6. 6.
    Barton NH: Multilocus clines. Evolution 37: 454–471 (1983).Google Scholar
  7. 7.
    Barton NH, Hewitt GM: The genetic basis of hybrid inviability in the grasshopper Podisma pedestris. Heredity 47: 367–383 (1981).Google Scholar
  8. 8.
    Barton NH, Hewitt GM: Analysis of hybrid zones. Annu Rev Syst Ecol 16: 113–148 (1985).Google Scholar
  9. 9.
    Bennett JH: Junctions in inbreeding. Genetica 26: 392–406 (1953).Google Scholar
  10. 10.
    Bennett ST, Kenton AY, Bennett MD: Genomic in situ hybridization reveals the allopolyploid nature of Milium montianum (Gramineae). Chromosoma 101: 420–424 (1992).Google Scholar
  11. 11.
    Berry ST, Leon AJ, Hanfrey CC, Challis P, Burkholz A, Barnes SR, Rufener GK, Lee M, Caligari PDS: Molecular marker analysis of Helianthus annuus L. 2. Construction of a RFLP linkage map for cultivated sunflower. Theor Appl Genet 91: 195–199 (1995).Google Scholar
  12. 12.
    Boutin SR, Young ND, Shoemaker R, Lorenzen L: SupergeneTM software assists DNA marker analysis via graphical display. Probe 3: 9–11 (1993).Google Scholar
  13. 13.
    Briar DS, Khush GS: Alien introgression in rice. Plant Mol Biol 35: 35–47 (1997).Google Scholar
  14. 14.
    Burke JM, Voss, TJ, Arnold ML: Genetic interactions and natural selection. Evolution 52: 1304–1310 (1998).Google Scholar
  15. 15.
    Byrne M, Murrell JC, Allen B, Moran GF: An integrated genetic linkage map for eucalypts using RFLP, RAPD and isozyme markers. Theor Appl Genet 91: 869–875 (1995).Google Scholar
  16. 16.
    Carver BF, Johnson RC, Rayburn AL: Genetic analysis of photosynthetic variation in hexaploid and tetraploid wheat and their interspecific hybrids. Photosyn Res 20: 105–118 (1989).Google Scholar
  17. 17.
    Chandler JM, Jan C, Beard BH: Chromosomal differentiation among the annual Helianthus species. Syst Bot 11: 353–371 (1986).Google Scholar
  18. 18.
    Chang C, Bowman JL, DeJohn AW, Landers ES, Meyerowitz EM: Restriction fragment length polymorphism map for Arabidopsis thaliana. Proc Natl Acad Sci USA 85: 6856–6860 (1988).Google Scholar
  19. 19.
    Charlesworth D: Evolution under the microscope. Curr Biol 5: 835–836 (1995).Google Scholar
  20. 20.
    Christie P, Macnair MR: Complementary lethal factors in two North American populations of the yellow monkey flower. J Hered 75: 510–511 (1984).Google Scholar
  21. 21.
    Clausen J, Hiesey WM: Experimental studies on the nature of species. IV. Genetic structure of ecological races. Carnegie Institute Washington, Publication 520 (1958).Google Scholar
  22. 22.
    Cockerham CC, Zeng ZB: Design III with marker loci. Genetics 143: 1437–1456 (1996).Google Scholar
  23. 23.
    Coyne JA: Speciation in action. Science 272: 700–701 (1996).Google Scholar
  24. 24.
    Coyne JA, Meyers W, Crittenden AP, Sniegowski P: The fertility effects of pericentric inversions in Drosophila melanogaster. Genetics 134: 487–496 (1993).Google Scholar
  25. 25.
    Crow JF: Mutation, mean fitness, and genetic load. Oxford Surv Evol Biol 9: 3–42 (1993).Google Scholar
  26. 26.
    DeVicente MC, Tanksley SD: QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134: 585–596 (1993).Google Scholar
  27. 27.
    Dobzhansky TH: Genetics and the Origin of Species. Columbia University Press, New York (1937).Google Scholar
  28. 28.
    Doebley JM, Goodman M, Stuber CW: Isoenzymatic variation in Zea (Gramineae). Syst Bot 9: 203–218 (1984).Google Scholar
  29. 29.
    Eldredge N, Gould SJ: Punctuated equilibria: an alternative to phylectic gradualism. In: Schopf TJM (ed), Models of Paleobiology, pp. 82–115. Freeman, Cooper & Company, San Francisco (1972).Google Scholar
  30. 30.
    Erwin DH, Anstey RL: New Approaches to Speciation in the Fossil Record. Columbia University Press, New York (1995).Google Scholar
  31. 31.
    Ewens WJ: Mathematical Population Genetics. Springer-Verlag, Berlin (1979).Google Scholar
  32. 32.
    Fisher RA: The Genetical Theory of Natural Selection. Oxford University Press, Oxford (1930).Google Scholar
  33. 33.
    Fisher RA: The Theory of Inbreeding. Oliver and Boyd, Edinburgh (1949).Google Scholar
  34. 34.
    Fisher RA: A fuller theory of junctions in inbreeding. Heredity 8: 187–197 (1953).Google Scholar
  35. 35.
    Fulton TM, Nelson JC, Tanksley SD: Introgression and DNA marker analysis of Lycopersicon peruvianum, a wild relative of the cultivated tomato, into Lycopersicon esculentum, followed by three successive backcross generations. Theor Appl Genet 95: 895–902 (1997).Google Scholar
  36. 36.
    Garcia GM, Stalker HT, Kochert G: Introgression analysis of an interspecific hybrid population in peanuts (Arachis hypogaea L.) using RFLP and RAPD markers. Genome 38:166–176 (1995).Google Scholar
  37. 37.
    Gemelfarb A, Lande R: Simulation of marker-assisted selection in hybrid populations. Genet Res Camb 63: 39–47 (1994).Google Scholar
  38. 38.
    Gemelfarb A, Lande R: Simulation of marker-assisted selection for non-additive traits. Genet Res Camb 64: 127–136 (1994).Google Scholar
  39. 39.
    Gemelfarb A, Lande R: Marker-assisted selection and marker-QTL associations in hybrid populations. Theor Appl Genet 91: 522–528 (1995).Google Scholar
  40. 40.
    Gentzbittel L, Vear F, Zhang Y-X, Bervillé A, Nicolas P: Development of a consensus linkage RFLP map of cultivated sunflower (Helianthus annuus L.). Theor Appl Genet 90: 1079–1086 (1995).Google Scholar
  41. 41.
    Gerassimova H: Chromosome alterations as a factor of divergence of forms. I. New experimentally produced strains of C. tectorum which are physiologically isolated from the original forms owing to reciprocal translocation. C R Acad Sci URSS 25: 148–154 (1939).Google Scholar
  42. 42.
    Gerstel DU: A new lethal combination of interspecific cotton hybrids. Genetics 39: 628–639 (1954).Google Scholar
  43. 43.
    Gó mez MI, Islam-Faridi MN, Woo S-S, Schertz KF, Czeschin D, Zwick MS, Wing RA, Stelly DM, Price HJ: FISH of a maize sh2-selected sorghum BAC to chromosomes of Sorghum bicolor. Genome 40: 475–478 (1997).Google Scholar
  44. 44.
    Gottlieb LD, Ford VS: Genetic studies of the pattern of floral pigmentation in Clarkia. Evolution 33: 1024–1039 (1988).Google Scholar
  45. 45.
    Graham GI, Wolff DW, Stuber CW: Characterization of a yield quantitative trait locus on chromosome 5 of maize by fine mapping. Crop Sci 37: 1601–1610 (1997).Google Scholar
  46. 46.
    Grant V: The regulation of recombination in plants. Cold Spring Harbor Symp Quant Biol 23: 337–363 (1958).Google Scholar
  47. 47.
    Grant V: Selection for vigor and fertility in the progeny of a highly sterile species hybrid in Gilia. Genetics 53: 757–775 (1966).Google Scholar
  48. 48.
    Grant V: The origin of a new species of Gilia in a hybridization experiment. Genetics 54: 1189–1199 (1966).Google Scholar
  49. 49.
    Grant V: Genetics of Flowering Plants. Columbia University Press, New York (1975).Google Scholar
  50. 50.
    Gresshoff P (Ed.): Plant Genome Analysis. CRC Press, Boca Raton, FL (1994).Google Scholar
  51. 51.
    Grootjans AP, Allersma RJ, Kik C: Hybridization of the habitat in disturbed hay meadows. In: van Andel J (ed), Disturbance in Grasslands, pp. 67–77. Dr. W. Junk Publishers, Dordrecht, Netherlands (1987).Google Scholar
  52. 52.
    Haldane JBS: The Causes of Evolution. Princeton University Press, Princeton (1932).Google Scholar
  53. 53.
    Hanson WD: Early generation analysis of lengths of chromosome segments around a locus held heterozygous with backcrossing or selfing. Genetics 44: 833–837 (1959).Google Scholar
  54. 54.
    Hanson WD: The breakup of initial linkage blocks under selected mating systems. Genetics 44: 857–868 (1959).Google Scholar
  55. 55.
    Harrison RG: Hybrid zones: windows on evolutionary process. Oxford Surv Evol Biol 7: 69–128 (1990).Google Scholar
  56. 56.
    Harushima Y, Kurata N, Yano M, Nagamura Y, Sasaki T, Minobe Y, Nakagahra M: Detection of segregation distortions in an indica-japonica rice cross using a high-resolution map. Theor Appl Genet 92: 145–150 (1996).Google Scholar
  57. 57.
    Heiser CB: Hybridization in the annual sunflowers: Helianthus annuus × H. debilis var. cucumerifolius. Evolution 5: 42–51 (1951).Google Scholar
  58. 58.
    Helentjaris T, Weber D, Wright S: Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms. Genetics 118: 353–363 (1988).Google Scholar
  59. 59.
    Hermson JGT: The genetic basis of hybrid necrosis in wheat. Genetica 33: 245–287 (1963).Google Scholar
  60. 60.
    Hewitt GM: The subdivision of species by hybrid zones. In: Otte D, Endler JA (eds), Speciation and Its Consequences, pp. 85–110. Sinauer Associates, Sunderland, MA (1989).Google Scholar
  61. 61.
    Hillis DM, Mable BK, Moritz C: Molecular Systematics. Sinauer Associates, Sunderland, MA (1996).Google Scholar
  62. 62.
    Hollingshead L: A lethal factor in Crepis effective only in an interspecific hybrid. Genetics 15: 114–140 (1930).Google Scholar
  63. 63.
    Hospital F, Chevalet C, Mulsant P: Using markers in gene introgression breeding programs. Genetics 132: 1199–1210 (1992).Google Scholar
  64. 64.
    Hospital F, Moreau L, Lacoudre R, Charcosset A, Gallais A: More on the efficiency of marker-assisted selection. Theor Appl Genet 95: 1181–1189 (1997).Google Scholar
  65. 65.
    Huskins CL: The origin of Spartina townsendii. Nature 127: 781 (1931).Google Scholar
  66. 66.
    Islam-Faridi MN, Mujeeb-Kazi A: Visualization of Secale cereale DNA in wheat germplasm by fluorescent in situ hybridization. Theor Appl Genet 90: 595–600 (1995).Google Scholar
  67. 67.
    Iwaro AD, Umaheran P, Screenivasan TN: Inheritance of foliar resistance to Phytophera palmivora (Butler) Butler in cacao (Theobroma cacao L.). Euphytica 96: 377–383 (1997).Google Scholar
  68. 68.
    Jena KK, Khush GS, Kochert G: RFLP analysis of rice (Oryza sativa L.) introgression lines. Theor Appl Genet 84: 608–616 (1992).Google Scholar
  69. 69.
    Joos S, Fink TM, Ratsch A, Lichter P: Mapping and chromosome analysis: the potential of fluorescence in situ hybridization. J Biotechnol 35: 135–153 (1994).Google Scholar
  70. 70.
    Lagercrantz U, Lydiate DJ: Comparative genome mapping in Brassica. Genetics 144: 1903–1910 (1996).Google Scholar
  71. 71.
    Lande R, Thompson R: Efficiency of marker-assisted selection on the improvement of quantitative traits. Genetics 124: 743–756 (1990).Google Scholar
  72. 72.
    Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L: MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181 (1987).Google Scholar
  73. 73.
    Lawson DM, Lunde CF, Mutschler MA: Marker-assisted transfer of acylsugar-mediated pest resistance from the wild tomato, Lycopersicon pennellii, to the cultivated tomato, Lycopersicon esculentum. Mol Breed 3: 307–317 (1997).Google Scholar
  74. 74.
    Le HT, Armstrong KC, Miki B: Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe. Plant Mol Biol Rep 7: 150–158 (1989).Google Scholar
  75. 75.
    Lewontin RC, Birch LC: Hybridization as a source of variation for adaptation to new environments. Evolution 20: 315–336 (1966).Google Scholar
  76. 76.
    Li Z, Pinson SRM, Paterson AH, Park WD, Stansel JW: Genetics of hybrid sterility and hybrid breakdown in an intersubspecific rice (Oryza sativa L.) population. Genetics 145: 1139–1148 (1997).Google Scholar
  77. 77.
    Li Z, Pinson SRM, Stansel JW, Park WD: Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.). Theor Appl Genet 91: 374–381 (1995).Google Scholar
  78. 78.
    Linder CR, Taha I, Seiler GJ, Snow AA, Rieseberg LH: Long-term introgression of crop genes into wild sunflower populations. Theor Appl Genet 96: 339–347 (1998).Google Scholar
  79. 79.
    Link AJ, Olsen MV: Physical map of the Saccharomyces cerevisiae genome at 110-kilobase resolution. Genetics 127: 681–698 (1991).Google Scholar
  80. 80.
    Liu CJ, Devos KM, Witcombe JR, Pittaway TS, Gale MD: The effect of genome and sex on recombination rates in Pennisetum species. Theor Appl Genet 93: 902–908 (1996).Google Scholar
  81. 81.
    Lynch M, Walsh B: Genetics and Analysis of Quantitative Traits. Sinauer Associates, Sunderland, MA (1998).Google Scholar
  82. 82.
    Macnair MR, Christie P: Reproductive isolation as a pleiotropic effect of copper tolerance in Mimulus guttatus. Am Nat 106: 351–372 (1983).Google Scholar
  83. 83.
    Mansur LM, Lark KG, Kross H, Oliveira A: Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Theor Appl Genet 86: 907–913 (1993).Google Scholar
  84. 84.
    Mansur LM, Orf J, Lark KG: Determining the linkage of quantitative trait loci to RFLP markers using extreme phenotypes of recombinant inbred lines of soybeans (Glycine max L. Merr.). Theor Appl Genet 86: 914–918 (1993).Google Scholar
  85. 85.
    McCarthy EM, Asmussen MA, Anderson WW: A theoretical assessment of recombinational speciation. Heredity 74: 502–509 (1995).Google Scholar
  86. 86.
    McGrath JM, Wielgus SM, Helgeson JP: Segregation and recombination of Solanum brevidens synteny groups in progeny of somatic hybrids with S. tuberosum: intragenomic equals or exceeds intergenomic recombination. Genetics 142: 1335–1348 (1996).Google Scholar
  87. 87.
    Mitchell-Olds T: Interval mapping of viability loci causing heterosis in Arabidopsis. Genetics 140: 1105–1109 (1995).Google Scholar
  88. 88.
    Mukai Y, Gill BS: Detection of barley chromatin added to wheat by genomic in situ hybridization. Genome 34: 448–452 (1991).Google Scholar
  89. 89.
    Müntzing A: Outlines to a genetic monograph of the genus Galeopsis. Hereditas 13: 185–341 (1930).Google Scholar
  90. 90.
    Oka H-I: Analysis of genes controlling F1 sterility in rice by the use of isogenic lines. Genetics 77: 521–534 (1974).Google Scholar
  91. 91.
    Pachuari A, Choubey RN: Transgressive segregation for quantitative parts in interspecific matings (Avena sativa) A. maroccana of oats. Geobios (Jodhpur) 21: 39–43 (1994).Google Scholar
  92. 92.
    Quillet MC, Madjidian N, Griveau T, Serieys H, Tersac M, Lorieus M, Bervillé A: Mapping genetic factors controlling pollen viability in an interspecific cross in Helianthus section Helianthus. Theor Appl Genet 91: 1195–1202 (1995).Google Scholar
  93. 93.
    Rick CM, Smith PG: Novel variation in tomato species hybrids. Am Nat 88: 359–373 (1953).Google Scholar
  94. 94.
    Rieseberg LH: Hybrid origins of plant species. Annu Rev Ecol Syst 27: 359–389 (1997).Google Scholar
  95. 95.
    Rieseberg LH: Genetic mapping as a tool for studying speciation. In: Soltis DE, Soltis PS, Doyle JJ (eds), Molecular Systematics of Plants, 2nd ed., pp. 459–487. Chapman and Hall, New York (1998).Google Scholar
  96. 96.
    Rieseberg LH, Arias DM, Ungerer M, Linder CR, Sinervo B: The effects of mating design on introgression between chromosomally divergent sunflower species. Theor Appl Genet 93: 633–644 (1996).Google Scholar
  97. 97.
    Rieseberg LH, Beckstrom-Sternberg S, Doan K: Helianthus annuus ssp. texanus has chloroplast DNA and nuclear ribosomal RNA genes of Helianthus debilis ssp. cucumerifolius. Proc Natl Acad Sci USA 87: 593–597 (1990).Google Scholar
  98. 98.
    Rieseberg LH, Choi H, Chan R, Spore C: Genomic map of a diploid hybrid species. Heredity 70: 285–293 (1993).Google Scholar
  99. 99.
    Rieseberg LH, Desrochers A, Youn SJ: Interspecific pollen competition as a reproductive barrier between sympatric species of Helianthus (Asteraceae). Am J Bot 82: 515–519 (1995).Google Scholar
  100. 100.
    Rieseberg LH, Ellstrand NC: What can morphological and molecular markers tell us about plant hybridization? Crit Rev Plant Sci 12: 213–241 (1993).Google Scholar
  101. 101.
    Rieseberg LH, Kim MJ, Seiler GJ: Introgression between cultivated sunflowers and a sympatric wild relative, Helianthus petiolaris (Asteraceae). Int J Plant Sci 160: 102–108 (1999).Google Scholar
  102. 102.
    Rieseberg LH, Linder CR, Seiler G: Chromosomal and genic barriers to introgression in Helianthus. Genetics 141: 1163–1171 (1995).Google Scholar
  103. 103.
    Rieseberg LH, Sinervo B, Linder CR, Ungerer MC, Arias DM: Role of gene interactions in hybrid speciation: evidence from ancient and experimental hybrids. Science 272: 741–745 (1996).Google Scholar
  104. 104.
    Rieseberg LH, Van Fossen C, Desrochers A: Hybrid speciation accompanied by genomic reorganization in wild sunflowers. Nature 375: 313–316 (1995).Google Scholar
  105. 105.
    Rieseberg LH, Wendel J: Introgression and its consequences in plants. In: Harrison R (ed), Hybrid Zones and the Evolutionary Process, pp. 70–109. Oxford University Press, New York (1993).Google Scholar
  106. 106.
    Rieseberg LH, Whitton J, Gardner K: Hybrid zones and the genetic architecture of of a barrier to gene flow between two wild sunflower species. Genetics, 152: 713–727 (1999).Google Scholar
  107. 107.
    Ritland K: Inferrring the genetic basis of inbreeding depression in plants. Genome 39: 1–8 (1996).Google Scholar
  108. 108.
    Robertson A: Artificial selection with a large number of linked loci. Proceedings of the International Conference on Quantitative Genetics. Iowa State University Press, Ames (1977).Google Scholar
  109. 109.
    Sano Y, Kita F: Reproductive barriers distributed in Melilotus species and their genetic basis. Can J Genet Cytol 20: 275–289 (1978).Google Scholar
  110. 110.
    Saunders AR: Complementary lethal genes in the cowpea. S Afr J Sci 48: 195–197 (1952).Google Scholar
  111. 111.
    Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS: In situ localization of parental genomes in a wide hybrid. Ann Bot 64: 315–324 (1989).Google Scholar
  112. 112.
    Shaw DV, Sacks EJ: Response in genotypic and breeding value to a single generation of divergent selection for fresh fruit color in strawberry. J Am Soc Hort Sci 120: 270–273 (1995).Google Scholar
  113. 113.
    Sites JW, Moritz C: Chromosomal evolution and speciation revisited. Syst Zool 36: 153–174 (1987).Google Scholar
  114. 114.
    Slatkin M, Lande R: Segregation variance after hybridization of isolated populations. Genet Res Camb 64: 51–56 (1994).Google Scholar
  115. 115.
    Smith HH, Daly K: Discrete populations derived by interspecific hybridization and selection. Evolution 13: 476–487 (1959).Google Scholar
  116. 116.
    Song K, Lu P, Tang K, Osborn T: Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92: 7719–7723 (1995).Google Scholar
  117. 117.
    Stebbins GL: Variation and Evolution in Plants. Columbia University Press, New York (1950).Google Scholar
  118. 118.
    Stebbins GL: The hybrid origin of microspecies in the Elymus glaucus complex. Cytologia 36 (Suppl): 336–340 (1957).Google Scholar
  119. 119.
    Stebbins GL: The inviability, weakness and sterility in interspecific hybrids. Adv Genet 9: 147–215 (1958).Google Scholar
  120. 120.
    Stephens SG: The cytogenetics of speciation in Gossypium. I. Selective elimination of the donor parent genotype in interspecific backcrosses. Genetics 34: 627–637 (1949).Google Scholar
  121. 121.
    Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES: Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using genetic markers. Genetics 132: 823–839 (1992).Google Scholar
  122. 122.
    Syzmura JM, Barton NH: The genetic structure of the hybrid zone between the fire-bellied toads Bombina bombina and B. variegata: comparisons between transects and between loci. Evolution 45: 237–291 (1991).Google Scholar
  123. 123.
    Tadmor Y, Zamir D, Ladizinsky G: Genetic mapping of an ancient translocation in the genus Lens. Theor Appl Genet 73: 883–892 (1987).Google Scholar
  124. 124.
    Takashi C, Leitch IJ, Ryan A, Bennett MD: The use of genomic in situ hybridization (GISH) to show transmission of recombinant chromosomes by a partially fertile bigeneric hybrid, Gasteria lutzii × Aloe aristata (Aloaceae), to its progeny. Chromosoma 105: 342–348 (1997).Google Scholar
  125. 125.
    Tanksley SD, Nelson JC: Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92: 191–203 (1996).Google Scholar
  126. 126.
    Tanksley SD, Miller JC, Paterson AH, Bernatsky R: Molecular mapping of plant chromosomes. In: Gustafson JP, Appels R (eds), Chromosome Structure and Function, pp. 157–173. Plenum Press, New York (1988).Google Scholar
  127. 127.
    Tanksley SD, Rick CM: Isozyme genetic linkage map of the tomato: applications in genetics and breeding. Theor Appl Genet 57: 161–170 (1980).Google Scholar
  128. 128.
    Templeton AR: Mechanisms of speciation: a population genetic approach. Annu Rev Ecol Syst 12: 23–48 (1981).Google Scholar
  129. 129.
    Templeton AR: Cladistic approaches to identifying determinants of variability in multifactorial phenotypes and the evolutionary significance of variation in the human genome. In: Cardew G (ed), Variation in the Human Genome, pp. 259–283. Wiley, Chichester, UK (1996).Google Scholar
  130. 130.
    Toojinda T, Baird E, Booth A, Broers L, Hayes P, Powell W, Thomas W, Viva H, Young G: Introgression of quantitative trait loci (QTL) determining stripe rust resistance in barley: an example of marker-assisted line development. Theor Appl Genet 96: 123- 131.Google Scholar
  131. 131.
    True JR, Weir BS, Laurie CC: A genome-wide survey of hybrid incompatibility factors by the introgression of marked segments of Drosophila mauritiana chromosomes into Drosophila simulans. Genetics 144: 819–837 (1996).Google Scholar
  132. 132.
    Ungerer MC, Baird S, Pan J, Rieseberg LH: Rapid hybrid speciation in wild sunflowers. Proc Natl Acad Sci USA 95:11757–11762 (1998).Google Scholar
  133. 133.
    Wagner WH, Jr: Irregular morphological development in fern hybrids. Phytomorphology 12: 87–100 (1962).Google Scholar
  134. 134.
    Wan J, Yamaguchi Y, Kato H, Ikehashi H: Two new loci for hybrid sterility in cultivated rice (Oryza sativa L.). Theor Appl Genet 92: 183–190 (1996).Google Scholar
  135. 135.
    Wang G-L, Dong J-M, Paterson AH: The distribution of Gossypium hirsutum chromatin in G. barbadense germplasm: molecular analysis of introgressive hybridization. Theor Appl Genet 91: 1153–1161 (1995).Google Scholar
  136. 136.
    Weller JI: Mapping and analysis of quantitative trait loci in Lycopersicon (tomato) with the aid of genetic markers using approximate maximum likelihood methods. Heredity 59: 413–421 (1987).Google Scholar
  137. 137.
    Weller JI, Soller M, Bordy T: Linkage analysis of quantitative traits in an interspecific cross of tomato (Lycopersicon esculentum × Lycopersicon pimpinellifolium) by means of genetic markers. Genetics 118: 329–339 (1988).Google Scholar
  138. 138.
    Whitaker JC, Curnow RN, Haley CS, Thompson R: Using marker-maps in marker-assisted selection. Genet Res Camb 66: 255–265 (1995).Google Scholar
  139. 139.
    Wiebe GA: Complementary factors in barley giving a lethal progeny. J Hered 25: 273–275 (1934).Google Scholar
  140. 140.
    Williams CE, Wielgus SM, Harberlach GT, Guenther C, Kim-Lee H, Helgeson JP: RFLP analysis of chromosomal segregation in progeny from an interspecific hexaploid hybrid between Solanum brevidens and Solanum tuberosum. Genetics 135: 1167–1173 (1993).Google Scholar
  141. 141.
    Wu C-I, Johnson, Palopali MF: Haldane's rule and its legacy: why are there so many sterile males? Trends Ecol Evol 11: 281–284 (1996).Google Scholar
  142. 142.
    Wu C-I, Palopoli M: Genetics of postmating reproductive isolation in animals. Annu Rev Genet 27: 283–308 (1994).Google Scholar
  143. 143.
    Xiao J, Li J, Yuan L, Tanksley SD: Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet 92: 230–244 (1996).Google Scholar
  144. 144.
    Young ND: HyperGene: software for DNA-based 'graphical genotypes'. Probe 1: 18 (1992).Google Scholar
  145. 145.
    Young ND, Tanksley SD: Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet 77: 95–101 (1989).Google Scholar
  146. 146.
    Young ND, Tanksley SD: RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcross breeding. Theor Appl Genet 77: 353–359 (1989).Google Scholar
  147. 147.
    Yu SB, Li JX, Xu CG, Gao YJ, Li XH, Zhang Q, Maroof MAS: Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94: 9226–9231 (1997).Google Scholar
  148. 148.
    Zamir C, Tadmor Y: Unequal segregation of nuclear genes in plants. Bot Gaz 147: 355–358 (1986).Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Loren H. Rieseberg
    • 1
  • Stuart J.E. Baird
    • 1
  • Keith A. Gardner
    • 1
  1. 1.Dept. of BiologyIndiana UniversityBloomingtonUSA

Personalised recommendations