Advertisement

Journal of Atmospheric Chemistry

, Volume 38, Issue 2, pp 167–185 | Cite as

Isoprene and Its Oxidation Products Methyl Vinyl Ketone, Methacrolein, and Isoprene Related Peroxides Measured Online over the Tropical Rain Forest of Surinam in March 1998

  • C. Warneke
  • R. Holzinger
  • A. Hansel
  • A. Jordan
  • W. Lindinger
  • U. Pöschl
  • J. Williams
  • P. Hoor
  • H. Fischer
  • P. J. Crutzen
  • H. A. Scheeren
  • J. Lelieveld
Article

Abstract

Airborne measurements of volatile organic compounds (VOC) were performed overthe tropical rainforest in Surinam (0–12 km altitude,2°–7° N, 54°–58° W) using the proton transferreaction mass spectrometry (PTR-MS) technique, which allows online monitoringof compounds like isoprene, its oxidation products methyl vinyl ketone,methacrolein, tentatively identified hydroxy-isoprene-hydroperoxides, andseveral other organic compounds. Isoprene volume mixing ratios (VMR) variedfrom below the detection limit at the highest altitudes to about 7 nmol/molin the planetary boundary layer shortly before sunset. Correlations betweenisoprene and its product compounds were made for different times of day andaltitudes, with the isoprene-hydroperoxides showing the highest correlation.Model calculated mixing ratios of the isoprene oxidation products using adetailed hydrocarbon oxidation mechanism, as well as the intercomparisonmeasurement with air samples collected during the flights in canisters andlater analysed with a GC-FID, showed good agreement with the PTR-MSmeasurements, in particular at the higher mixing ratios.Low OH concentrations in the range of 1–3 × 105molecules cm-3 averaged over 24 hours were calculated due to lossof OH and HO2 in the isoprene oxidation chain, thereby stronglyenhancing the lifetime of gases in the forest boundary layer.

isoprene isoprene oxidation products tropical forest boundary layer box model methylvinylketone methacrolein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, R., 1990: Gas-phase tropospheric chemistry of organic compounds: A review, Atmos. Environ. 24A, 1–41.Google Scholar
  2. Biesenthal, T. A, Wu, Q., Shepson, P. B., Wiebe, H. A., Anlauf, K. G., and Mackay, G. I., 1997: A study of relationships between isoprene, its oxidation products, and ozone in the lower Fraser Valley, BC, Atmos. Environ. 14, 2049–2058.Google Scholar
  3. Crutzen, P. C., Delany, A. C., Greenberg, J. P., Haagenson, P., Heidt, L., Luer, R., Pollock, W., Seiler, W., Wartburg, A., and Zimmerman, P. R., 1985: Tropospheric chemical composition measurements in Brazil during the dry season, J. Atmos. Chem. 2, 233–256.Google Scholar
  4. Crutzen, P. J. and Andreae, M. O., 1990: Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles, Science, 250, 1669–1678.Google Scholar
  5. Crutzen, P. J., 1995: Overview of tropospheric chemistry: Developments during the past quarter century and a look ahead, Faraday Discuss., 100, 1–21.Google Scholar
  6. Fehsenfeld, F., Calvert, J., Fall, R., Goldan, P., Guenther, A., Hewitt, C. N., Lamb, B., Liu, S., Trainer, M., Westberg, H., and Zimmerman, P., 1992: Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry, Global Biogeochem. Cycles 6, 389–430.Google Scholar
  7. Goldan, P. D., Kuster, W., and Fehsenfeld, F., Hydrocarbon measurements in the southeastern United States: The rural oxidants in the southern environment (ROSE) program 1990, J. Geophys. Res. 100, 25,945–25,963.Google Scholar
  8. Goldan, P. D., Kuster, W., and Fehesenfeld, F., 1993: The observation of a C5 alcohol emission in North American pine forest, Geophys. Res. Lett. 20 (11), 1039–1042.Google Scholar
  9. Greenberg, J. P. and Zimmerman, P., 1984: Nonmethane hydrocarbons in remote tropical, continental, and marine atmospheres, J. Geophys. Res. 89, 4767–4778.Google Scholar
  10. Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P., 1995: A global model of nature volatile organic compound emissions, J. Geophys. Res. 100, 8873–8892.Google Scholar
  11. Hansel, A., Jordan, A., Warneke, C., Holzinger, R., and Lindinger, W., 1998: Improved detection limit of the Proton-Transfer-Reaction Mass-Spectrometer (PTR-MS): On-line monitoring of volatile organic compounds at mixing ratios of 10 pmol/mol, Rapid Communications in Mass Spectrometry 12, 871–875.Google Scholar
  12. Hansel, A., Jordan, A., Holzinger, R., Prazeller, P., Vogel, W., and Lindinger, W., 1995: Proton transfer mass spectrometry: On-line trace gas analysis at ppt level, Int. J. Mass Spectrom. Ion Processes 149/150.Google Scholar
  13. Helmig, D., Balsley, B., Davis, K., Kuck, L., Jensen, M., Bognar, J., Smith Jr., T., Vasques Arrieta, R., Rodriguez, R., and Birks, J. W., Vertical profiling and determination of landscape fluxes of biogenic nonmethane hydrocarbons within the planetary boundary layer in the Peruvian Amazon, J. Geophys. Res. 103, 519–525.Google Scholar
  14. Houweling, S., Dentener, F., and Lelieveld, J., 1998: The impact of non-methane hydrocarbon compounds on tropospheric photochemistry, J. Geophys. Res. 103, 10,673–10,696.Google Scholar
  15. Jenkin, M. E., Boyd, A. A., and Lesclaux, R., 1998: Peroxy radical kinetics resulting form the OH-initiated oxidation of 1,3-butadiene, 2,3 dimethyl, 1,3-butadiene and isoprene, J. Atmos. Chem. 29, 267–298.Google Scholar
  16. Jenkin, M. E., Saunders, S. M., and Pilling, M. J., 1997: The tropospheric degradation of volatile organic compounds: A protocol for mechanism development, Atmos. Environ. 31 (1), 81–104.Google Scholar
  17. Jordan, A., Hansel, A., Holzinger, R., and Lindinger, W., 1995: Acetonitrile and benzene in the breath of smokers and non-smokers investigated by proton transfer mass spectrometry, Int. J. Mass Spectrom. Ion Processes 148.Google Scholar
  18. Lelieveld, J., Bregman, A., Scheeren, H. A., Ström, J., Carslaw, K. S., Fischer, H., Siegmund, P. C., and Arnold, F., 1999: Chlorine activation and ozone destruction in the northern lowermost stratosphere, J. Geophys. Res. 104, 8201–8214.Google Scholar
  19. Lindinger, W., Hansel, A., Jordan, A., 1998: On-line monitoring of volatile organic compounds at pmol/mol levels by means of Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) medical applications, food control, and environmental research, Int. J. Mass Spectrom. Ion Processes 173, 191–241.Google Scholar
  20. Lindinger, W., 1986: Swarm methodes, in gaseous ion chemistry and mass spectrometry, J. H. Futrell (ed.), John Wiley & Sons, Inc., pp. 141–154.Google Scholar
  21. Martin, R. S., Westberg, H., Allwine, E., Ashman, L., Farmer, J. C., and Lamb, B., 1991: Measurements of isoprene and its oxidation products in a Central Pennsylvania deciduous forest, J. Atmos. Chem. 13, 1–32.Google Scholar
  22. Monson, R. K., Jaeger, C. H., Adams III, W., Driggers, E. M., Silver, G. M., and Fall, R., 1992: Relationships among isoprene emission rate, photosynthesis, and isoprene synthase activity as influenced by temperature, Plant. Physiol. 98, 1175–1180.Google Scholar
  23. Montzka, S. A., Trainer, M., Goldan, P., Kuster, W. C., and Fehsenfeld, F., 1993: Isoprene and its oxidation products, methyl vinyl ketone and methacrolein, in the rural troposphere, J. Geophys. Res. 98, 1101–1111.Google Scholar
  24. Pierotti, D., Wofsy, S. C., Jacob, D., and Rasmussen, R. A., 1990: Isoprene and its oxidation products: Methacrolein and methyl vinyl ketone, J. Geophys. Res. 95 (D2), 1871–1881.Google Scholar
  25. Pöschl, U., Williams, J., Hoor, P., Fischer, H., Crutzen, P. J., Warneke, C., Holzinger, R., Hansel, A., Jordan, A., Lindinger, W., Scheeren, H. A., and Lelieveld, J., 2001: High acetone concentrations throughout the 0–12 km altitude range over the Tropical Rainforest in Surinam, J. Atmos. Chem., this issue.Google Scholar
  26. Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J., 1997: World Wide Web site of a Master Chemical Mechanism (MCM) for use in tropospheric chemistry models, Atmos. Environ. 31 (8), 1249.Google Scholar
  27. Sharkey, T. D., and Loreto, F., 1993: Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves, Oecologia 95, 328–333.Google Scholar
  28. Torres, A. L. and Buchan, H., 1988: Troposphere nitric oxide measurements over the Amazon basin, J. Geophys. Res. 93 (D2), 1396–1406.Google Scholar
  29. Wang, Y., Jacob, D. J., and Logan, L. A., 1998: Global simulation of tropospheric O3-NOx-hydrocarbon chemistry 3. Origin of tropospheric ozone and effects of nonmethane hydrocarbons, J. Geophys. Res. 103, 10,757–10,767.Google Scholar
  30. Williams, J., Pöschl, U., Crutzen, P. J., Hansel, A., Holzinger, R., Warneke, C., Lindinger, W., and Lelieveld, J., 2001: An atmospheric chemistry interpretation of mass scans obtained from a proton transfer mass spectrometer flown over the Tropical Rainforest of Surinam, J. Atmos. Chem., this issue.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • C. Warneke
    • 1
  • R. Holzinger
    • 1
  • A. Hansel
    • 1
  • A. Jordan
    • 1
  • W. Lindinger
    • 1
  • U. Pöschl
    • 2
  • J. Williams
    • 2
  • P. Hoor
    • 2
  • H. Fischer
    • 2
  • P. J. Crutzen
    • 2
  • H. A. Scheeren
    • 3
  • J. Lelieveld
    • 3
  1. 1.Institut für IonenphysikUniversity of InnsbruckAustria
  2. 2.Atmospheric Chemistry DepartmentMax Planck Institute for ChemistryMainzGermany
  3. 3.Institute for Marine and Atmospheric Research (IMAU)UtrechtThe Netherlands

Personalised recommendations