Journal of Atmospheric Chemistry

, Volume 38, Issue 2, pp 133–166 | Cite as

An Atmospheric Chemistry Interpretation of Mass Scans Obtained from a Proton Transfer Mass Spectrometer Flown over the Tropical Rainforest of Surinam

  • J. Williams
  • U. Pöschl
  • P. J. Crutzen
  • A. Hansel
  • R. Holzinger
  • C. Warneke
  • W. Lindinger
  • J. Lelieveld


Data on a variety of organic gases are presented, obtained with a protontransfer mass spectrometer (PTR-MS) operated during the March 1998 LBA/CLAIREairborne measurement campaign, between 60 and 12500 m over the rainforest inSurinam (2° N–5° N, 54° W–57° W). The instrumentcan detect molecules with a proton affinity greater than water, includingalkenes, dialkenes, carbonyls, alcohols, and nitriles. Many such molecules areemitted from the rainforest (e.g., isoprene) or formed from the oxidation ofprimary emissions (e.g., methylvinylketone (MVK) and methacrolein (MACR)).From a comparison with modelled data; the variation with altitude; previouslyreported biogenic emissions and the time and location of the measurement,possible and probable identities for the significant masses encountered in therange 33–140 amu have been deduced.The main observed protonated masses, postulated identities and observedaverage boundary layer mixing ratios over the rainforest were: 33 methanol(1.1 nmol/mol); 42 acetonitrile (190 pmol/mol); 43 multiple possibilities (5.9nmol/mol), 45 acetaldehyde (1.7 nmol/mol), 47 formic acid (not quantified);59 acetone (2.9 nmol/mol), 61 acetic acid (not quantified), 63 dimethylsulphide (DMS) (289 pmol/mol), 69 isoprene (1.7 nmol/mol), 71 MVK + MACR (1.3nmol/mol), 73 methyl ethyl ketone (1.8 nmol/mol), 75 hydroxyacetone (606pmol/mol), 83 C5 isoprene hydroxy carbonylsC5H8O2, methyl furan, and cis 3-hexen-1-ol(732 pmol/mol), 87 C5 carbonyls and methacrylic acid, 95 possibly2-vinyl furan (656 pmol/mol), 97 unknown (305 pmol/mol), 99 cis hexenal (512pmol/mol) and 101 isoprene C5 hydroperoxides (575 pmol/mol). Somespecies agreed well with those derived from an isoprene only photochemicalmodel (e.g., mass 71 MVK + MACR) while others did not and were observed athigher than previously reported mixing ratios (e.g., mass 59 acetone, mass 63DMS). Monoterpenes were not detected above the detection limit of 300pmol/mol. Several species postulated are potentially important sources ofHOx in the free troposphere, e.g., methanol, acetone, methyl ethylketone, methyl vinyl ketone and methacrolein.

proton transfer mass spectrometer (PTR-MS) tropical rainforest emissions volatile organic compounds (VOC) isoprene isoprene oxidation products methacrolein methyl vinyl ketone upper tropospheric HOx tropical OH acetonitrile acetone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, F., Burger, B., Drostefanke, F., Grimm, F., Krieger, A., Schneider, J., and Stilp, T., 1997a: Acetone in the upper troposphere and lower stratosphere-impact on trace gases and aerosols, Geophys. Res. Lett. 24, 3017–3020.Google Scholar
  2. Arnold, F., Schneider, J., Gollinger, K., Schlager, H., Schulte, P., Hagen, D. E., Whitefield, P. D., and Van Velthoven, P., 1997b: Observation of upper tropospheric sulfur dioxide-and acetonepollution: Potential implications for hydroxyl radical and aerosol formation, Geophys. Res. Lett. 24, 57–60.Google Scholar
  3. Atkinson, R., 1986: Kinetics and mechanisms of the gas phase reactions of the OH radical with organic compounds under atmospheric conditions, Chem. Rev. 86 (69).Google Scholar
  4. Atkinson, R., 1990: Gas-phase tropospheric chemistry of organic compounds: A review, Atmos. Environ. 24A, 1–41.Google Scholar
  5. Bandy, A. R., Thornton, D. C., Blomquist, B. W., Chen, S., Wade, T. P., Ianni, J. C., Mitchell, G. M., and Nadler, W., 1996: Chemistry of dimethyl sulfide in the equatorial Pacific atmosphere, Geophys. Res. Lett. 23, 741–744.Google Scholar
  6. Batterman, S. A., Zhang, G. Z., and Baumann, M., 1998: Analysis and stability of aldehydes and terpenes in electropolished canisters, Atmos. Environ. 32, 1647–1655.Google Scholar
  7. Benkelberg, H.-J., Hamm, S., and Warneck, P., 1995: Henry's law coefficients for aqueous solutions of acetone, acetaldehyde and acetonitrile and equilibrium constants for the addition of acetone and acetaldehyde with bisulphate, J. Atmos. Chem. 20, 17–34.Google Scholar
  8. Berresheim, H., 1987: Biogenic sulfur emissions from the subarctic and antarctic oceans, J. Geophys. Res. 92, 13,245–13,262.Google Scholar
  9. Berresheim, H., Wine, P. H., and Davis, D. D., 1995: Sulfur in the atmosphere, in H. Singh (ed.), Composition, Chemistry and Climate of the Atmosphere, Van Nostrand Rheinhold, New York.Google Scholar
  10. Blomquist, B. W., Bandy, A. R., and Thornton, D. C., 1996: Sulfur gas measurements in the eastern North Atlantic ocean during the Atlantic stratocumulus transition experiment, J. Geophys. Res. 101, 4377–4392.Google Scholar
  11. Carter, W. P. L. and Atkinson, R., 1996: Development and evaluation of a detailed mechanism for the atmospheric reactions of isoprene and NOx, Int. J. Chem. Kin. 28, 497–530.Google Scholar
  12. Chen, Z. M., Shao, K. S., Hu, M., Zhang, Y. H., and Tang, X. Y., 1998: Formation of organic peroxides in the photo-oxidation of CH4, Sci. in China-Series B Chem. 41, 488–493.Google Scholar
  13. Chien, C.-J., Charles, M. J., Sexton, K. G., and Jeffries, H. E., 1998: Analysis of airborne carboxylic acids and phenols as their pentafluorobenzyl derivatives: Gas chromatography/ion trap mass spectrometry with a novel chemical ionization reagent, PFBOH, Environ. Sci. Technol. 32, 299–309.Google Scholar
  14. Ciccioli, P., 1998: Natural and anthropogenic hydrocarbons in air, in N. Hewitt (ed.), Reactive Hydrocarbons in the Atmosphere, Elsevier.Google Scholar
  15. Crutzen, P. J. and Andreae, M. O., 1990: Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles, Science 250, 1669–1678.Google Scholar
  16. Crutzen, P. J., Delany, A. C., Greenberg, J. P., Haagenson, P., Heidt, R., Luer, R., Pollock, W., Seiler, Wartburg, A., and Zimmerman, P. R., 1985: Tropospheric chemical composition measurements in Brazil during the dry season, J. Atmos. Chem. 2, 233–256.Google Scholar
  17. Donahue, N. M. and Prinn, R. G., 1993: In situ nonmethane hydrocarbon measurements on SAGA 3 J. Geophys. Res. 98, 16,915–16,932.Google Scholar
  18. Fehsenfeld, F., Calvert, J., Fall, R., Goldan, P., Guenther, A. B., Hewitt, C. N., Lamb, B., Liu, S., Trainer, M., Westberg, H., and Zimmerman, P., Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry, Global Biogeochem. Cycles 6, 389–430.Google Scholar
  19. Ferrari, C. P., Kaluzny, P., Roche, A., Jacob, V., and Foster, P., 1998: Aromatic hydrocarbons and aldehydes in the atmosphere of Grenoble, France, Chemosphere 37, 1587–1601.Google Scholar
  20. Fukui, Y. and Doskey, P. V., 1998: Air-surface exchange of nonmethane organic compounds at a grassland site-seasonal variations and sressed emissions, J. Geophys. Res. 103, 13,153–13,168.Google Scholar
  21. Goldan, P. D., Kuster, W. C., and Fehsenfeld, F. C., 1997: Nonmethane hydrocarbons measurements during the tropospheric OH photochemistry experiment, J. Geophys. Res. 105, 6315–6324.Google Scholar
  22. Goldan, P. D., Kuster, W. C., and Fehsenfeld, F. C., 1993: The observation of a C5 alcohol emission in north American pine forest, Geophys. Res. Lett. 20, 1039–1042.Google Scholar
  23. Goldstein, A. H., Fan, S. M., Goulden, M. L., Munger, J. W., and Wofsy, S. C., 1996: Emissions of ethene, propene, and 1-butene by a midlatitude forest, J. Geophys. Res. 101, 9149–9157.Google Scholar
  24. Greenberg, J. P., Zimmerman, P. R., Pollock, W. F., Lueb, R. A., and Heidt, L. E., 1992: Diurnal variability of atmospheric methane, nonmethane hydrocarbons, and carbon monoxide at Mauna Loa, J. Geophys. Res., [Atmos.] 97, 10,395–10,413.Google Scholar
  25. Gregory, G. L., Browell, E. V., and Warren, L. S., 1988: Boundary layer ozone: An airborne survey above the Amazon basin, J. Geophys. Res. 93, 1452–1468.Google Scholar
  26. Gries, C., Nash, T. H., and Kesselmeier, J., 1994: Exchange of reduced sulfur gases between lichens and the atmosphere, Biochemistry 26, 25–39.Google Scholar
  27. Grosjean, D., 1997: Atmospheric chemistry of alcohols, J. Braz. Chem. Soc. 8, 433–442.Google Scholar
  28. Guenther, A., 1997: Seasonal and spatial variations in natural volatile organic compound emissions, Ecological Applications 7, 34–45.Google Scholar
  29. Guenther, A., Hewitt, N. C., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P., 1995: A global model of natural volatile organic compound emissions, J. Geophys. Res. 100, 8873–8892.Google Scholar
  30. Hamm, S., Hahn, J., Helas, G., and Warneck, P., 1984: Acetonitrile in the troposphere: Residence time due to rainout and uptake by ocean, Geophys. Res. Lett. 11, 1207–1210.Google Scholar
  31. Hamm, S., Helas, G., and Warneck, P., 1989: Acetonitrile in the air over Europe, Geophys. Res. Lett., 16, 483–486.Google Scholar
  32. Hamm, S. and Warneck, P., 1990: The interhemispheric distribution and the budget of acetonitrile in the troposphere, J. Geophys. Res., 95, 20,593–20,606.Google Scholar
  33. Hansel, A., Jordan, A., Holzinger, R., Prazeller, P., Vogel, W., and Lindinger, W., 1995: Proton transfer reacion mass spectrometry on-line trace gas analysis at the ppb level, Int. J. Mass Spectrom. and Ion Processes 149, 609–619.Google Scholar
  34. Hansel, A., Jordan, A., Warneke, C., Holzinger, R., and Lindigner, W., 1998: Improved detection limit of the proton transfer mass spectrometer: On line monitoring of volatile organic compounds at mixing ratios of a few pptv., Rapid Comm. Mass Spectrom. 12, 871–875.Google Scholar
  35. Harriss, R. C., Garstang, M., Wofsy, S. C., Beck, S. M., Bendura, R. J., Coelho, J. R. B., Drewry, J. W., Hoell, J. M., Matson, P. A., McNeal, R. J, Molion, L. C. B., Navarro, R. L., Rabine, V., and Snell, R. L., 1990: The Amazon layer experiment: Wet season 1987, J. Geophys. Res. 95, 16,721–16,736.Google Scholar
  36. Harriss, R. C., Wolfsy, S. C., Garstang, M., Browell, E. V., Molion, L. C. B., McNeal, R. J., Hoell, Jr., J. M, Bendura, R. J., Beck, S. M., Navarro, R. L., Riley, J. T., and Snell, R. L., 1988: The Amazon boundary layer experiment (ABLE 2A): dry season 1985, J. Geophys. Res., 93, 1351–1360.Google Scholar
  37. Heide, R. T., Schaap, H., Wobben, H. J., de Valois, P. J., and Timmer, R., 1981: Flavor constituents in rum, The Quality of food and Beverages, Academic Press., Inc., pp. 183–200.Google Scholar
  38. Hofmann, U., Wller, D., Ammann, C., Jork, E., and Kesselmeier, J., 1997: Cryogenic trapping of atmospheric organic acids under laboratory and field conditions, Atmos. Environ. 31, 1275–1284.Google Scholar
  39. Holzinger, R., Warneke, C., Hansel, A., Jordan, A., Lindinger, W., Scharffe, D. H., Schade, G., and Crutzen, P. J., 1999: Biomass burning as a source of formaldehyde, acetaldehyde, methanol, acetone, acetonitrile and hydrogen cyanide, Geophys. Res. Lett., 26, 1161–1164.Google Scholar
  40. Hoshika, Y., 1982: Gas chromatographic determination of lower fatty acids in air at part-per-trillion levels, Anal. Chem. 54, 2433–2437.Google Scholar
  41. Isodorov, V. A., Zenkevich, I. G., and Ioffe, B. V., 1985: Volatile organic compounds in the atmosphere of forests, Atmos. Environ. 19, 1–8.Google Scholar
  42. Jacob, D. J. and Wofsy, S. C., 1988: Photochemistry of biogenic emissions over the Amazon forest, J. Geophys. Res. 93, 1477–1486.Google Scholar
  43. Jacob, D. J. and Wofsy, S. C., 1990: Budgets of reactive nitrogen, hydrocarbons, and ozone over the Amazon forest during the wet season, J. Geophys. Res. 95, 16,737–16,754.Google Scholar
  44. Jacob, E., Liu, K., and Meuzelaar, H. L. C., 1997: Thermal decomposition of wood and cellulose in the presence of solvent vapors, Ind. Eng. Chem. Res. 36, 2087–2095.Google Scholar
  45. Jefferson, A., Tanner, D. J., Eisele, F. L., and Berresheim, H., 1998: Sources and sinks of H2SO4 in the remote antarctic marine boundary layer, J. of Geophys. Res. Atmos. 103, 1639–1645.Google Scholar
  46. Jenkin, M. E., Boyd, A. A., and Lesclaux, R., 1998: Peroxy radical kinetics resulting form the OH-initiated oxidation of 1,3-butadiene, 2,3 dimethyl, 1,3-butadiene and isophrene, J. Atmos. Chem. 29, 267–298.Google Scholar
  47. Jenkin, M. E., Saunders, S. M., and Pilling, M. J., 1997: The tropospheric degradation of volatile organic compounds: A protocol for mechanism development, Atmos. Environ. 31, 81–104.Google Scholar
  48. Jordan, A. H. A., Holzinger, R., and Lindinger, W., 1995: Acetonitrile and benzene in the breath of smokers and non-smokers investigated by proton transfer mass spectrometry (PTR-MS), Int. J. Mass. Spectom. Ion Proc. 148, L1-L3.Google Scholar
  49. Kanda, K., Tsuruta, H., and Minami, K., 1992: Emission of dimethyl sulfide, carbonyl sulfide and carbon disulfide from paddy fields, Soil Sci. Plant Nutr. 38, 709–716.Google Scholar
  50. Kesselmeier, J., Meixner, F. X., Hofmann, U., Ajavon, A. L., Leimbach, S., and Andreae, M. O., 1993: Reduced sulphur compound exchange between the atmosphere and tropical tree species in southern Cameroon, Biogeochemistry 23, 23–45.Google Scholar
  51. Kesselmeier, J. and Staudt, M., 1999: Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology, J. of Atmos. Chem. 33, 23–38.Google Scholar
  52. Kirstine, W., Galbally, I., Ye, Y. R., and Hooper, W., 1998: Emissions of volatile organic compounds (primarily oxygenated species) from pasture, J. Geophys. Res. 103, 10605–10619.Google Scholar
  53. König, G., Brunda, M., Puxbaum, H., Hewitt, S. N., Duckham, S. C., and Rudolph, J., 1995: Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected Mid-European agricultural and natural plant species, Atmos. Environ. 29, 861–874.Google Scholar
  54. Lamb, B., Gay, D., Westberg, H., and Pierce, 1993: A biogenic hydrocarbon emission inventory for the U.S.A. using a simple forest canopy model, Atmos. Environ. 27A, 1673–1690.Google Scholar
  55. Lawrence, M., 1999: A model for studies of tropospheric photochemistry. Description of global distributions and evaluation, J. Geophys. Res., in press.Google Scholar
  56. Lee, Y.-N., Zhou, X., Kleinman, L. I., Nunnermacker, L. J., Springston, S. R., Daum, P. H., Newman, L., Keigley, W. G., Holdren, M. W., Spicer, C. W., Young, V., Fu, B., Parrish, D. D., Holloway, J., Williams, J., Roberts, J., Ryerson, T. B., and Fehsenfeld, F. C., 1998: Atmospheric chemistry and distribution of formaldehyde and several multioxygenated carbonyl compounds during the 1995 Nashville/Middle Tennessee Ozone Study, J. Geophys. Res. 103, 22,449–22,462.Google Scholar
  57. Lindinger, W., 1986: Gaseous Ion Chemistry and Mass Spectrometry, Swarm Methods, John Wiley, New York, pp. 141–154.Google Scholar
  58. Lindinger, W. and Hansel, A., 1997: Analysis of trace gases at ppb levels by proton transfer reaction mass spectrometry (PTR-MS), Plenum Sources Sci. Technol. 6, 1–7.Google Scholar
  59. Lindinger, W., Hansel, A., and Jordan, A., 1998: On-line monitoring of volatile organic compounds at pptv levels by means of proton transfer mass spectrometry (PTR0-MS)-medical applications, food control and environmental research (Review), Int. J. Mass Spectrom. & Ion Proc. 173, 191–241.Google Scholar
  60. Lobert, J. M., Scharffe, D. H., Hao, W. M., and Crutzen, P. J., 1990: Importance of biomass burning in the atmospheric budgets of nitrogen-containing gases, Nature 346, 552–554.Google Scholar
  61. MacDonald, R. C. and Fall, R., 1993: Detection of substantial emissions of methanol from plants to the atmosphere, Atmos. Environ. 27A, 1709–1713.Google Scholar
  62. Mattheis, J. P., Fellman, J. K., Chen, P. M., and Patterson, M. E., 1991: Changes in headspace volatiles during physiological development of bisbee delicious apple fruit, J. Agric. Food Chem. 39, 1902–1906.Google Scholar
  63. McFarland, M., Albritton, D. L., Fehsenfeld, F. C., Ferguson, E. E., and Schmeltekopf, A. L., 1973: Flow-drift technique for ion mobility and ion molecules reaction rate constant measurements, Chem. Phys. 59, 6610–6620.Google Scholar
  64. McKeen, S. A., Gierczak, T., Burkholder J. B., Wennberg, P. O., Hanisco, T. F., Keim, E. R., Gao, R. S., Liu, S. C., Ravishankara, A. R., and Fahey, D. W., 1997: The photochemistry of acetone in the upper troposphere-a source of odd-hydrogen radicals, Geophys. Res. Lett. 24, 3177–3180.Google Scholar
  65. Montzka, S. A., Trainer, M., Angevine, W. M., and Fehsenfeld, F. C., 1995: Measurements of 3-methyl furan, methyl vinyl ketone and methacrolein at a rural forested site in the southeastern United States, J. Geophys. Res. 100, 11,393–11,401.Google Scholar
  66. Peppelenbos, H. W., Brien, L., and Gorris, L. G. M., 1998: The influence of carbon dioxide on gas exchange of mungbean sprouts at aerobic and anaerobic conditions, J. of the Sci. of Food and Agric. 76, 443–449.Google Scholar
  67. Pöschl, U., Williams, J., Hoor, P., Fischer, H., Crutzen, P. J., Warneke, C., Holzinger, R., Hansel, A., Jordan., A., Lindinger, W., Scheeren, H. A., and Lelieveld, J., 2001: High acetone concentrations throughout the troposphere over the tropical rainforest in Surinam, J. Atmos. Chem., this issue.Google Scholar
  68. Pouwels, A. D., Tom, A., Eijkel, G. B., and Boon, J. J., 1987: Characterisation of beech wood and its holocellulose and xylan fractions by pyrolysis-gas chromatography-mass spectrometry, J. Anal. and Appl. Pyrolysis 11, 417–436.Google Scholar
  69. Rasmussen, R. A., 1972: What do the hydrocarbons from trees contribute to air pollution? JAPCA, 22, 537–543.Google Scholar
  70. Sakuma, H., Munakata, S., and Sugawara, S., 1981: Votatile products of cellulose pyrolysis, Agric. Biol. Chem. 45, 443–451.Google Scholar
  71. Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J., 1997: World wide web site of a master chemical mechanism (MCM) for use in tropospheric models, Atmos. Environ. 31, 1249–1249.Google Scholar
  72. Scheeren, B., 1998: Private communication of unpublished results from the same measurement campaign.Google Scholar
  73. Schulten, H. R., Simmleit, N., and Müller, R., 1989: Characterisation of plant materials by pyrolysisfield ionisation mass spectrometry: High resolution mass spectrometry, time resolved high resolution mass spectrometry and curie point pyrolysis gas chromatography mass spectrometry, Anal. Chem. 61, 221–227.Google Scholar
  74. Sharkey, T. D., 1996: Emission of low molecular mass hydrocarbons from plants, Trends in Plant Science 1, 78–82.Google Scholar
  75. Singh, H. B., Kanakidou, M., Crutzen, P. J., and Jacob, D. J., 1995: High concentrations and photochemical fate of oxygenated hydrocarbons in the global atmosphere, Nature 378, 50–54.Google Scholar
  76. Singh, H. B., O'Hara, O., Herlth, D., Sachse, W., Blake, D. R., Bradshaw, J. D., Kanakidou, M., and Crutzen, P. J., 1994: Acetone in the atmosphere: Distribution, sources, and sinks, J. Geophys. Res., 1805–1819.Google Scholar
  77. Singh, H. B., Salas, L. J., Ridley, B. A., Shetter, J. D., Donahue, N. M., Fehsenfeld, F. C., Fahey, D. W., Parrish, D. D., Williams, E. J., Liu, S. C., Hubler, G., and Murphy, P. C., 1985: Relationship between peroxyacetyl nitrate and nitrogen oxides in the clean troposphere, Nature 318, 347–349.Google Scholar
  78. Spanel, P. and Smith, D., 1997: SIFT Studies of the reactions of H3O+, NO+, and O2(+) with a series of alcohols, Int. J. Mass Spectrom. 167, 375–388.Google Scholar
  79. Su, T. and Chesnavich, W. J., 1982: Parametrization of the ion polar molecule collision rate constant by trajectory calculations, J. Chem. Phys. 76, 5183–5185.Google Scholar
  80. Taucher, J. A., Hansel, A., Jordan, A., and Lindinger, W., 1996: Analysis of compounds in human breath after ingestion of garlic using proton-transfer reaction mass spectrometry, J. Agric. Food. Chem. 44, 3778–3782.Google Scholar
  81. Torres, A. L. and Buchan, H., 1988: Tropospheric nitric oxide measurement over the Amazon Basin, J. Geophys. Res. 93, 1396–1406.Google Scholar
  82. Tyndall, G. S., Wallington, T. J., and Ball, J. C., 1998: Ftir product study of the reactions CH3O2 +CCH3O2 and CH3O2 +CO3, J. Phys. Chem. 102, 2547–2554.Google Scholar
  83. Volz, R. K., Biasi, W. V., and Mitcham, E. J., 1998: Fermentative volatile production in relation to carbon dioxide induced flesh browning in Fuji apples, Hort. Sci. 33, 1231–1234.Google Scholar
  84. Warneke, C., Holzinger, R., Hansel, A., Lindinger, W., Williams, J., Pöschl, U., and Crutzen, P. J., 2001: Isoprene and its oxidation products methyl vinyl ketone, methacrolein and isoprene peroxides measured online over the tropical rainforest of Surinam in March 1998, J. Atmos. Chem., this issue.Google Scholar
  85. Warneke, C., Karl, T., Judmaier, H., Hansel, A., Jordan, A., Lindinger, W., and Crutzen, P., 1999: Acetone, methanol and other pertially oxidized volatile organic emissions from dead plant matter by abiological processes: Significance for atmospheric chemistry, J. Global Biochemical Cycles 13, 9–18.Google Scholar
  86. Warneke, C., Kuczynski, J., Hansel, A., Jordan, A., Vogel, W., and Lindinger, W., 1996: Proton transfer reaction mass spectrometry (PTR-MS): Propanol in human breath, Int. J. Mass Spectrom. Ion Proc. 154, 61–70.Google Scholar
  87. Wennberg, P. O., Hanisco, T. F., Jaegle, L., Jacob, D. J., Hintsa, E. J., Lanzendorf, E. J., Anderson, J. G., Gao, R. S., Keim, E. R., Donnelly, S. G., Delnegro, L A., Fahey, D. W., McKeen, S. A., Salawitch, R. J., Webster, C. R., May, R. D., Herman, R. L., Proffitt, M. H., Margitan, J. J., Atlas, E. L., Schauffler, S. M., Flocke, F., McElroy, C. T., and Bui, T. P., 1998: Hydrogen radicals, nitrogen radicals, and the production of O3 in the upper troposphere, Science 279, 49–53.Google Scholar
  88. Winer, A. M., Arey, J., Atkinson, R., Aschmann, S. M., Long, W. D., Morrison, C. L., and Olszyk, D. M., 1992: Emission rates of organics from vegetation in California's central valley, Atmos. Environ. 26B, 2647–2659.Google Scholar
  89. Yang, Z., Kanda, K., Tsuruta, H., and Minami, K., 1996: Measurement of biogenic sulfur gases emission from some Chinese and Japanese soils, Atmos. Environ. 30, 2399–2405.Google Scholar
  90. Yokelson, R. J., Susott, R., Ward, D. E., Reardon, J., and Griffith, D. W. T., 1997: Emissions from smoldering combustion of biomass measured by open-path fourier transform infrared spectroscopy, J. Geophys. Res. 102, 18,865–18,877.Google Scholar
  91. Zimmerman, P. R., Greenberg, J. P., and Westberg, C. E., 1988: Measurements of atmospheric hydrocarbons and biogenic emissions fluxes in the Amazon boundary layer, J. Geophys. Res. 93, 1407–1416.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • J. Williams
    • 1
  • U. Pöschl
    • 1
  • P. J. Crutzen
    • 1
  • A. Hansel
    • 2
  • R. Holzinger
    • 2
  • C. Warneke
    • 2
  • W. Lindinger
    • 2
  • J. Lelieveld
    • 3
  1. 1.Max Planck Institute for ChemistryMainzGermany
  2. 2.Institute for IonphysicsInnsbruck UniversityInnsbruckAustria
  3. 3.Institute for Marine and Atmospheric ResearchUtrecht UniversityThe Netherlands

Personalised recommendations