Breast Cancer Research and Treatment

, Volume 60, Issue 2, pp 135–142 | Cite as

Microsatellite instability markers in breast cancer: A review and study showing MSI was not detected at ‘BAT 25’ and ‘BAT 26’ microsatellite markers in early-onset breast cancer

  • Shoo Peng Siah
  • Shoo Peng Siah
  • Diana M Quinn
  • Graeme D Bennett
  • Graeme Casey
  • Robert LP Flower
  • Graeme Suthers
  • Zbigniew Rudzki


Microsatellite markers may provide evidence of faulty DNA mismatch repair (MMR) via the detection of microsatellite instability (MSI). The choice of microsatellite markers may impact on the MSI detection rate. In hereditary non-polyposis colon cancer (HNPCC), several informative microsatellite markers have been recommended. Two of these, BAT 25 and BAT 26, are quasi-homozygous, enabling analysis of tumour DNA in the absence of paired normal DNA. Sixty-six breast cancer patients under 45 years of age at diagnosis were examined for MSI at BAT 25 and BAT 26. Tumour DNA was extracted from paraffin-embedded tissue. No MSI was detected at the BAT 25 or BAT 26 loci. An additional five microsatellite markers, known to be informative for HNPCC, were examined for MSI in these patients. Apparently-normal profiles were achieved. A tabulated survey of 306 microsatellite markers used to detect MSI in breast cancer revealed that only 35.5% of markers detected MSI at an average rate of 2.9%. The MSI detection rate at the specific HNPCC markers varied from 0% to 10% in breast cancer, with D175250 and TP53 being the HNPCC markers most suitable for analysis of breast cancer. The size of the microsatellite marker's repeat unit did not impact on MSI detection rates. Compiled data from large studies (n>100) revealed D115988 as the marker with the highest MSI detection rate. Genomic instability pathways of carcinogenesis, characterised by MMR defects and MSI, appear to play a role in the genesis of some breast cancer types.

breast cancer microsatellite instability microsatellite markers review survey 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rhyu MS: Molecular mechanisms underlying hereditary nonpolyposis colorectal carcinoma. J Natl Cancer Inst 88: 240–251, 1996Google Scholar
  2. 2.
    Marra G, Boland CR: Hereditary nonpolyposis colorectal cancer: the syndrome, the genes, and historical perspectives. J Natl Cancer Inst 87: 1114–1125, 1995Google Scholar
  3. 3.
    Aaltonen LA, Peltomaki P, Leach FS, Sistonen P, Pylkkanen L, Mecklin JP, Jarvinen H, Powell SM, Jen J, Hamilton SR, et al.: Clues to the pathogenesis of familial colorectal cancer. Science 260: 812–816, 1993Google Scholar
  4. 4.
    Arzimanoglou, II, Gilbert F, Barber HR: Microsatellite instability in human solid tumors. Cancer 82: 1808–1820, 1998Google Scholar
  5. 5.
    De Marchis L, Contegiacomo A, D'Amico C, Palmirotta R, Pizzi C, Ottini L, Mastranzo P, Figliolini M, Petrella G, Amanti C, Battista P, Bianco AR, Frati L, Cama A, Mariani-Costantini R: Microsatellite instability is correlated with lymph node-positive breast cancer. Clin Cancer Res 3: 241–248, 1997Google Scholar
  6. 6.
    Siah S-P, Quinn DM: Microsatellite markers in breast cancer. http://prmserv1/microsatellite-markers/, 1999Google Scholar
  7. 7.
    Risinger JI, Barrett JC, Watson P, Lynch HT, Boyd J: Molecular genetic evidence of the occurrence of breast cancer as an integral tumor in patients with the hereditary nonpolyposis colorectal carcinoma syndrome. Cancer 77: 1836–1843, 1996Google Scholar
  8. 8.
    Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, Meltzer SJ, Rodriguez-Bigas MA, Fodde R, Ranzani GN, Srivastava S: A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58: 5248–5257, 1998Google Scholar
  9. 9.
    Hoang JM, Cottu PH, Thuille B, Salmon RJ, Thomas G, Hamelin R: BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines. Cancer Res 57: 300–303, 1997Google Scholar
  10. 10.
    Zhou XP, Hoang JM, Li YJ, Seruca R, Carneiro F, Sobrinho-Simoes M, Lothe RA, Gleeson CM, Russell SE, Muzeau F, Flejou JF, Hoang-Xuan K, Lidereau R, Thomas G, Hamelin R: Determination of the replication error phenotype in human tumors without the requirement for matching normal DNA by analysis of mononucleotide repeat microsatellites. Genes Chromosomes Cancer 21: 101–107, 1998Google Scholar
  11. 11.
    Zhou XP, Hoang JM, Cottu P, Thomas G, Hamelin R: Allelic profiles of mononucleotide repeat microsatellites in control individuals and in colorectal tumors with and without replication errors. Oncogene 15: 1713–1718, 1997Google Scholar
  12. 12.
    Samowitz WS, Slattery ML: Regional reproducibility of microsatellite instability in sporadic colorectal cancer. Genes Chromosomes Cancer 26: 106–114, 1999Google Scholar
  13. 13.
    Provan AB, Hodges E, Smith AG, Smith JL: Use of paraffin wax embedded bone marrow trephine biopsy specimens as a source of archival DNA. J Clin Pathol 45: 763–765, 1992Google Scholar
  14. 14.
    Parsons R, Myeroff LL, Liu B, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B: Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer. Cancer Res 55: 5548–5550, 1995Google Scholar
  15. 15.
    Weissenbach J, Gyapay G, Dib C, Vignal A, Morissette J, Millasseau P, Vaysseix G, Lathrop M: A second-generation linkage map of the human genome. Nature 359: 794–801, 1992Google Scholar
  16. 16.
    Hall JM, Friedman L, Guenther C, Lee MK, Weber JL, Black DM, King MC: Closing in on a breast cancer gene on chromosome 17q. Am J Hum Genet 50: 1235–1242, 1992Google Scholar
  17. 17.
    Weber JL, May PE: Dinucleotide repeat polymorphism at the D18S34 locus. Nucleic Acids Res 18: 3431, 1990Google Scholar
  18. 18.
    Peltomaki P, Lothe RA, Aaltonen LA, Pylkkanen L, Nystrom-Lahti M, Seruca R, David L, Holm R, Ryberg D, Haugen A, et al.: Microsatellite instability is associated with tumors that characterize the hereditary non-polyposis colorectal carcinoma syndrome. Cancer Res 53: 5853–5855, 1993Google Scholar
  19. 19.
    Fishel R, Lescoe MK, Rao MR, Copeland NG, Jenkins NA, Garber J, Kane M, Kolodner R: The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer [published erratum appears in Cell 1994 Apr 8;77(1): 167]. Cell 75: 1027–1038, 1993Google Scholar
  20. 20.
    Leach FS, Nicolaides NC, Papadopoulos N, Liu B, Jen J, Parsons R, Peltomaki P, Sistonen P, Aaltonen LA, Nystrom-Lahti M, et al.: Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75: 1215–1225, 1993Google Scholar
  21. 21.
    Liu B, Farrington SM, Petersen GM, Hamilton SR, Parsons R, Papadopoulos N, Fujiwara T, Jen J, Kinzler KW, Wyllie AH, Vogelstein B, Dunlop MG: Genetic instability occurs in the majority of young patients with colorectal cancer. Nature Medicine 1: 348–352, 1995Google Scholar
  22. 22.
    Walsh T, Chappell SA, Shaw JA, Walker RA: Microsatellite instability in ductal carcinoma in situ of the breast. J Pathol 185: 18–24, 1998Google Scholar
  23. 23.
    Patel U, Grundfest-Broniatowski S, Gupta M, Banerjee S: Microsatellite instabilities at five chromosomes in primary breast tumors. Oncogene 9: 3695–3700, 1994Google Scholar
  24. 24.
    Wooster R, Cleton-Jansen AM, Collins N, Mangion J, Cornelis RS, Cooper CS, Gusterson BA, Ponder BA, von Deimling A, Wiestler OD, et al.: Instability of short tandem repeats (microsatellites) in human cancers. Nat Genet 6: 152–156, 1994Google Scholar
  25. 25.
    Han HJ, Yanagisawa A, Kato Y, Park JG, Nakamura Y: Genetic instability in pancreatic cancer and poorly differentiated type of gastric cancer. Cancer Res 53: 5087–5089, 1993Google Scholar
  26. 26.
    Bergthorsson JT, Egilsson V, Gudmundsson J, Arason A, Ingvarsson S: Identification of a breast tumor with micro satellite instability in a potential carrier of the hereditary non-polyposis colon cancer trait. Clin Genet 47: 305–310, 1995Google Scholar
  27. 27.
    Lothe RA, Peltomaki P, Meling GI, Aaltonen LA, Nystrom-Lahti M, Pylkkanen L, Heimdal K, Andersen TI, Moller P, Rognum TO, et al.: Genomic instability in colorectal cancer: relationship to clinicopathological variables and family history. Cancer Res 53: 5849–5852, 1993Google Scholar
  28. 28.
    Tomita S, Deguchi S, Miyaguni T, Muto Y, Tamamoto T, Toda T: Analyses of microsatellite instability and the transforming growth factor-beta receptor type II gene mutation in sporadic breast cancer and their correlation with clinicopathological features [In Process Citation]. Breast Cancer Res Treat 53: 33–39, 1999Google Scholar
  29. 29.
    Fujii S, Takeshima Y, Arihiro K, Kaneko M, Inai K: Microsatellite instability in breast cancers with special reference to patients' age and bilaterality. Hiroshima J Med Sci 47: 89–97, 1998Google Scholar
  30. 30.
    Sourvinos G, Kiaris H, Tsikkinis A, Vassilaros S, Spandidos DA: Microsatellite instability and loss of heterozygosity in primary breast tumours. Tumour Biol 18: 157–166, 1997Google Scholar
  31. 31.
    Paulson TG, Wright FA, Parker BA, Russack V, Wahl GM: Microsatellite instability correlates with reduced survival and poor disease prognosis in breast cancer. Cancer Res 56: 4021–4026, 1996Google Scholar
  32. 32.
    Glebov OK, McKenzie KE, White CA, Sukumar S: Frequent p53 gene mutations and novel alleles in familial breast cancer. Cancer Res 54: 3703–3709, 1994Google Scholar
  33. 33.
    Yee CJ, Roodi N, Verrier CS, Parl FF: Microsatellite instability and loss of heterozygosity in breast cancer. Cancer Res 54: 1641–1644, 1994Google Scholar
  34. 34.
    Bubb VJ, Curtis LJ, Cunningham C, Dunlop MG, Carothers AD, Morris RG, White S, Bird CC, Wyllie AH: Microsatellite instability and the role of hMSH2 in sporadic colorectalcancer. Oncogene 12: 2641–2649, 1996Google Scholar
  35. 35.
    Shaw JA, Walsh T, Chappell SA, Carey N, Johnson K, Walker RA: Microsatellite instability in early sporadic breast cancer. Br J Cancer 73: 1393–1397, 1996Google Scholar
  36. 36.
    Contegiacomo A, Palmirotta R, De Marchis L, Pizzi C, Mastranzo P, Delrio P, Petrella G, Figliolini M, Bianco AR, Frati L, et al.: Microsatellite instability and pathological aspects of breast cancer. Int J Cancer 64: 264–268, 1995Google Scholar
  37. 37.
    Frazier ML, Sinicrope FA, Amos CI, Cleary KR, Lynch PM, Levin B, Luthra R: Loci for efficient detection of microsatellite instability in hereditary non-polyposis colorectal cancer. Oncol Rep 6: 497–505, 1999Google Scholar
  38. 38.
    Rodriguez-Bigas MA, Boland CR, Hamilton SR, Henson DE, Jass JR, Khan PM, Lynch H, Perucho M, Smyrk T, Sobin L, Srivastava S: A National Cancer Institute Workshop on Hereditary Nonpolyposis Colorectal Cancer Syndrome: meeting highlights and Bethesda guidelines. J Natl Cancer Inst 89: 1758–1762, 1997Google Scholar
  39. 39.
    Jeffreys AJ, Royle NJ, Wilson V, Wong Z: Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature 332: 278–281, 1988Google Scholar
  40. 40.
    Jonsson M, Johannsson O, Borg A: Infrequent occurrence of microsatellite instability in sporadic and familial breast cancer. Eur J Cancer 31A: 2330–2334, 1995Google Scholar
  41. 41.
    Hu RJ, Lee MP, Connors TD, Johnson LA, Burn TC, Su K, Landes GM, Feinberg AP: A 2.5-Mb transcript map of a tumor-suppressing subchromosomal transferable fragment from 11p15.5, and isolation and sequence analysis of three novel genes. Genomics 46: 9–17, 1997Google Scholar
  42. 42.
    Hoggard N, Brintnell B, Howell A, Weissenbach J, Varley J: Allelic imbalance on chromosome 1 in human breast cancer. II. Microsatellite repeat analysis. Genes Chromosomes Cancer 12: 24–31, 1995Google Scholar
  43. 43.
    Loeb LA: Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51: 3075–3079, 1991Google Scholar
  44. 44.
    Loeb LA: Microsatellite instability: marker of a mutator phenotype in cancer. Cancer Res 54: 5059–5063, 1994Google Scholar
  45. 45.
    Kinzler KW, Vogelstein B: Lessons from hereditary colorectal cancer. Cell 87: 159–170, 1996Google Scholar
  46. 46.
    Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B: Mutations of mitotic checkpoint genes in human cancers. Nature 392: 300–303, 1998Google Scholar
  47. 47.
    Orr-Weaver TL, Weinberg RA: A checkpoint on the road to cancer [news; cornment]. Nature 392: 223–224, 1998Google Scholar
  48. 48.
    Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP: CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA 96: 8681–8686, 1999Google Scholar
  49. 49.
    Deng G, Chen A, Hong J, Chae HS, Kim YS: Methylation of CpG in a small region of the hMLH 1 promoter invariably correlates with the absence of gene expression. Cancer Res 59: 2029–2033, 1999Google Scholar
  50. 50.
    Williams C, Norberg T, Ahmadian A, Ponten F, Bergh J, Inganas M, Lundeberg J, Uhlen M: Assessment of sequencebased p53 gene analysis in human breast cancer: messenger RNA in comparison with genomic DNA targets. Clin Chem 44: 455–462, 1998Google Scholar
  51. 51.
    Bergthorsson JT, Eiriksdottir G, Barkardottir RB, Egilsson V, Arason A, Ingvarsson S: Linkage analysis and allelic imbalance in human breast cancer kindreds using microsatellite markers from the short arm of chromosome 3. Hum Genet 96: 437–443, 1995Google Scholar
  52. 52.
    Benachenhou N, Guiral S, Gorska-Flipot I, Labuda D, Sinnett D: Frequent loss of heterozygosity at the DNA mismatchrepair loci hMLHI and hMSH3 in sporadic breast cancer. Br J Cancer 79: 1012–1017, 1999Google Scholar
  53. 53.
    Schmitt FC, Soares R, Gobbi H, Milanezzi F, Santos-Silva F, Cirnes L, Costa C, Seruca R: Microsatellite instability in medullary breast carcinomas. Int J Cancer 82: 644–647, 1999Google Scholar
  54. 54.
    Karnik P, Plummer S, Casey G, Myles J, Tubbs R, Crowe J, Williams BR: Microsatellite instability at a single locus (D11S988) on chromosome 11p15.5 as a late event in mammary tumorigenesis. Hum Mol Genet 4: 1889–1894, 1995Google Scholar
  55. 55.
    Vaurs-Barriere C, Vidal V, Penault-Llorca F, Kwiatkowski F, Maugard C, Bignon Y: Pathology of sporadic breast tumors with LOH at the BRCA1 locus: correlation with histopathological features specific to familial BRCA1 tumors and absence of microsatellite instability. Int J Oncol 12: 1373–1378, 1998Google Scholar
  56. 56.
    Krajinovic M, Richer C, Gorska-Flipot I, Gaboury L, Novakovic I, Labuda D, Sinnett D: Genomic loci susceptible to replication errors in cancer cells. Br J Cancer 78: 981–985, 1998Google Scholar
  57. 57.
    Chappell SA, Walsh T, Walker RA, Shaw JA: Loss of heterozygosity at chromosome 6q in preinvasive and early invasive breast carcinomas. Br J Cancer 75: 1324–1329, 1997Google Scholar
  58. 58.
    Cropp CS, Champeme MH, Lidereau R, Callahan R: Identification of three regions on chromosome 17q in primary human breast carcinomas which are frequently deleted. Cancer Res 53: 5617–5619, 1993Google Scholar
  59. 59.
    Dillon EK, de Boer WB, Papadimitriou JM, Turbett GR: Microsatellite instability and loss of heterozygosity in mammary carcinoma and its probable precursors. Br J Cancer 76: 156–162, 1997Google Scholar
  60. 60.
    McCulloch RK, Sellner LN, Papadimitrou JM, Turbett GR: The incidence of microsatellite instability and loss of heterozygosity in fibroadenoma of the breast. Breast Cancer Res Treat 49: 165–169, 1998Google Scholar
  61. 61.
    Laake K, Odegard A, Andersen TI, Bukholm IK, Karesen R, Nesland JM, Ottestad L, Shiloh Y, Borresen-Dale AL: Loss of heterozygosity at 11q23.1 in breast carcinomas: indication for involvement of a gene distal and close to ATM. Genes Chromosomes Cancer 18: 175–180, 1997Google Scholar
  62. 62.
    Chen T, Sahin A, Aldaz CM: Deletion map of chromosome 16q in ductal carcinoma in situ of the breast: refining a putative tumor suppressor gene region. Cancer Res 56: 5605–5609, 1996Google Scholar
  63. 63.
    Vincent F, Hagiwara K, Ke Y, Stoner GD, Demetrick DJ, Bennett WP: Mutation analysis of the transforming growth factor beta type II receptor in sporadic human cancers of the pancreas, liver, and breast. Biochem Biophys Res Commun 223: 561–564, 1996Google Scholar
  64. 64.
    Koreth J, Bakkenist CJ, McGee JO: Allelic deletions at chromosome 11q22–q23.1 and 11q25-qterm are frequent in sporadic breast but not colorectal cancers. Oncogene 14: 431–437, 1997Google Scholar
  65. 65.
    Tomlinson IP, Nicolai H, Solomon E, Bodmer WF: The frequency and mechanism of loss of heterozygosity on chromosome 11q in breast cancer. J Pathol 180: 38–43, 1996Google Scholar
  66. 66.
    Futreal PA, Soderkvist P, Marks JR, Iglehart JD, Cochran C, Barrett JC, Wiseman RW: Detection of frequent allelic loss on proximal chromosome 17q in sporadic breast carcinoma using microsatellite length polymorphisms. Cancer Res 52: 2624–2627, 1992Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Shoo Peng Siah
    • 1
  • Shoo Peng Siah
    • 2
  • Diana M Quinn
    • 1
  • Graeme D Bennett
    • 2
  • Graeme Casey
    • 2
  • Robert LP Flower
    • 1
  • Graeme Suthers
    • 3
  • Zbigniew Rudzki
    • 2
  1. 1.School of Pharmacy and Medical ScienceUniversity of South AustraliaAdelaideAustralia
  2. 2.Molecular PathologyInstitute of Medical and Veterinary ScienceAdelaideAustralia
  3. 3.South Australia Clinical Genetics ServicesWomen's and Children's HospitalNorth AdelaideAustralia

Personalised recommendations