Journal of Atmospheric Chemistry

, Volume 36, Issue 2, pp 157–230 | Cite as

Impact of Non-Methane Hydrocarbons on Tropospheric Chemistry and the Oxidizing Power of the Global Troposphere: 3-Dimensional Modelling Results

  • Nathalie Poisson
  • Maria Kanakidou
  • Paul J. Crutzen


The impact of natural and anthropogenicnon-methane hydrocarbons (NMHC) on troposphericchemistry is investigated with the global,three-dimensional chemistry-transport model MOGUNTIA.This meteorologically simplified model allows theinclusion of a rather detailed scheme to describeNMHC oxidation chemistry. Comparing model resultscalculated with and without NMHC oxidation chemistryindicates that NMHC oxidation adds 40–60% to surfacecarbon monoxide (CO) levels over the continents andslightly less over the oceans. Free tropospheric COlevels increase by 30–60%. The overall yield of COfrom the NMHC mixture considered is calculated to beabout 0.4 CO per C atom. Organic nitrate formationduring NMHC oxidation, and their transport anddecomposition affect the global distribution of NO x and thereby O3 production. The impact of theshort-lived NMHC extends over the entire tropospheredue to the formation of longer-lived intermediateslike CO, and various carbonyl and carboxyl compounds.NMHC oxidation almost doubles the net photochemicalproduction of O3 in the troposphere and leads to20–80% higher O3 concentration inNO x -rich boundarylayers, with highest increases over and downwind ofthe industrial and biomass burning regions. Anincrease by 20–30% is calculated for the remotemarine atmosphere. At higher altitudes, smaller, butstill significant increases, in O3 concentrationsbetween 10 and 60% are calculated, maximizing in thetropics. NO from lightning also enhances the netchemical production of O3 by about 30%, leading to asimilar increase in the global mean OH radicalconcentration. NMHC oxidation decreases the OH radicalconcentrations in the continental boundary layer withlarge NMHC emissions by up to 20–60%. In the marineboundary layer (MBL) OH levels can increase in someregions by 10–20% depending on season and NO x levels.However, in most of the MBL OH will decrease by10–20% due to the increase in CO levels by NMHCoxidation chemistry. The large decreases especiallyover the continents strongly reduce the markedcontrasts in OHconcentrations between land and oceanwhich are calculated when only the backgroundchemistry is considered. In the middle troposphere, OHconcentrations are reduced by about 15%, although dueto the growth in CO. The overall effect of thesechanges on the tropospheric lifetime of CH4 is a 15%increase from 6.5 to 7.4 years. Biogenic hydrocarbonsdominate the impact of NMHC on global troposphericchemistry. Convection of hydrocarbon oxidationproducts: hydrogen peroxides and carbonyl compounds,especially acetone, is the main source of HO x in theupper troposphere. Convective transport and additionof NO from lightning are important for the O3 budgetin the free troposphere.

non-methane hydrocarbons ozone HOx CO NOx tropospheric chemistry global 3-d modeling upper troposphere 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, B., Collins, J., Sachse, G., Whiting, G., Blake D., and Rowland, F. S., 1993: AASE-II observations of trace carbon species distributions in the mid to upper troposphere, Geophys. Res. Lett. 20, 2539–2542.Google Scholar
  2. Arnold, F., Schneider, J., Gollinger, K., Schlager, H., Schulte, P, Hage, D. E., Whitefield, P. D., and Van Velthoven, P., 1997: Observation of upper tropospheric sulfur dioxide and acetone pollution: Potential implications for hydroxyl radical and aerosol formation, Geophys. Res. Lett. 24, 57–60.Google Scholar
  3. Atkinson, R., 1994: Gas-phase tropospheric chemistry of organic compounds, J. Phys. Chem. Ref. Data, Monograph 2.Google Scholar
  4. Atkinson, R., Aschmann, S., and Winer, A., 1987: Alkyl nitrate formation from the reaction of a series of branched RO2 radicals with NO as a function of temperature and pressure, J. Atmos. Chem. 5, 91–102.Google Scholar
  5. Atlas, E., Pollock, W., Greenberg, J., and Heit, L., 1993: Alkyl nitrates, nonmethane hydrocarbons, and halocarbons gases over the Equatorial Pacific Ocean during Saga 3, J. Geophys. Res. 98, 16933–16947.Google Scholar
  6. Baboukas, E. D., Kanakidou, M., and Mihalopoulos, N., 2000: Carboxylic acids in gas and particulate phase above the Atlantic Ocean, J. Geophys. Res., in press.Google Scholar
  7. Benkovitz, C. M., Trevor Scholtz, M., Pacyna, J., Tarrason, L., Dignon, J., Voldner, E. C., Spiro, P. A., Logan, J. A., and Graedel, T. E., 1996: Global gridded inventories of anthropogenic emissions of sulfur and nitrogen, J. Geophys. Res. 101, 29239–29253.Google Scholar
  8. Bonsang, B., 1993: Hydrocarbons emissions from the ocean, in Niki and Becker (eds), The Tropospheric Chemistry of Ozone in the Polar Regions, Springer-Verlag Berlin, Heidelberg, pp. 251–260.Google Scholar
  9. Bonsang, B., Kanakidou, M., and Lambert, G., 1990: NMHC in marine atmosphere: Preliminary results of monitoring at Amsterdam Island, J. Atmos. Chem. 11, 169–178.Google Scholar
  10. Bonsang, B., Kanakidou, M., and Boissard, C., 1994: Contribution of tropical biomass burning to the global budget of hydrocarbons, carbon monoxide and tropospheric ozone, in J. Van Ham, L. H. J. M. Janssen, and R. J. Swart (eds), Non-CO 2 Greenhouse Gases, Kluwer Academic Publishers, Boston, pp. 261–270.Google Scholar
  11. Bonsang, B. et al., 1996a: Final report of the EC funded project ‘FIEld studies on the tropospheric degradation mechanisms of biogenic VOC's: Isoprene and Dimethylsulfide “FIELDVOC” (EV5V 0040)’.Google Scholar
  12. Bonsang, B., Poisson, N., and Kanakidou, M. et al., 1996b: Impact of natural non methane hydrocarbon oxidation on free radical and organic acid formation, Proceeding of The 7th European Symposium on Physico-Chemical Behaviour of Atmospheric Pollutants on the Oxidizing Capacity of the Troposphere, Venice, Italy, Oct. 2–4, pp. 35–47.Google Scholar
  13. Brown, S. S., Talukdar, R. K., and Ravishankara, A. R., 1999: Rate constants for the reaction OH + NO2 + M-> HNO3 + M under atmospheric conditions, Chem. Phys. Lett. 299, 277–284.Google Scholar
  14. Brühl, C., 1987: An efficient model for changes of global climate and composition of the atmosphere due to human activities, PhD Thesis, University of Mainz.Google Scholar
  15. Brühl, C. and Crutzen, P. J., 1988: Scenarios of possible change in atmospheric temperatures and ozone concentrations due to man's activities, estimated with a one-dimensional coupled photochemical climate model, Clim. Dyn. 2, 173–203.Google Scholar
  16. Burkholder, J. B., Talukdar, R. K., Ravishankara, A. R., and Solomon, S., 1993: Temperature dependence of the HNO3 UV absorption cross sections, J. Geophys. Res. 98, 22937–22948.Google Scholar
  17. Chatfield, R. B. and Crutzen, P. J., 1990: Are there interactions of iodine and sulfur species in marine air photochemistry? J. Geophys. Res. 95, 22319–22342.Google Scholar
  18. Clarkson, T. S., Martin, R. J., and Rudolph, J., 1997: Ethane and propane in the southern marine troposphere, Atmos. Environ. 31, 3763–3771.Google Scholar
  19. Crutzen, P.J., 1979: The role of NO and NO2 in the chemistry of the troposphere and stratosphere, Ann. Rev. Earth Planet. Sci. 7, 443–472.Google Scholar
  20. Crutzen, P. J., 1988: Tropospheric ozone: An overview, in I. S. A. Isaksen (ed.), Tropospheric Ozone, D. Reidel, Publ., Dordrecht, pp. 3–32.Google Scholar
  21. Crutzen, P. J. and Zimmermann, P. H., 1991: The changing photochemistry of the troposphere, Tellus 43AB, 136–151.Google Scholar
  22. Crutzen, P. J., 1995: Ozone in the troposphere, in H. B. Singh (ed.), Composition, Chemistry, and Climate of the Atmosphere, Van Nostrand Reinold Publ., New York, pp. 349–393.Google Scholar
  23. Crutzen, P. J., 1996: My life with O3, NOx, and other YZOx compounds (nobel lecture), Angew. Chem. Int. Ed. Engl. 35, 1758–1777.Google Scholar
  24. Crutzen, P. J., Lawrence, M. J., Pöschl, U., 1999: On the background photochemistry of tropospheric ozone, Tellus 51, 123–146.Google Scholar
  25. Curtis and Sweetenham, 1988: FACSIMILE/CHEKMAT Users Manual, AERE-R12805, Harwell Laboratory, Oxfordshire, U.K.Google Scholar
  26. Danielsen, E. F. and Mohnen, V. A., 1977: Project Dustorm report: Ozone transport, in situ measurements and meteorological analyses of tropopause folding, J. Geophys. Res. 82, 5867–5877.Google Scholar
  27. DeMore, W. B., Golden, D., Hampson, R., Howard, C., Kolb, C., and Molina, M., 1994: Chemical kinetics and photochemical data for use in stratospheric modeling. Evaluation number 11., JPL Publication, 94–26.Google Scholar
  28. Dentener, F. J., 1993: Heterogeneous chemistry in the troposphere, PhD Thesis, University of Utrecht, The Netherlands.Google Scholar
  29. Dentener, F. J. and Crutzen, P. J., 1993: Reaction of N2O5 on tropospheric aerosols: Impact on the global distributions of NOx, O3 and OH, J. Geophys. Res. 8, 7149–7163.Google Scholar
  30. Dentener, F. J., Hein, R., and Roelofs, G. J., 1995: A comparison of background ozone concentrations calculated by the three dimensional models ECHAM, MOGUNTIA and TM2 with measurements, Rep. cm-88, Institute of Meteorology, Stockholm University.Google Scholar
  31. Donahue, N. and Prinn, R., 1993: In situ nonmethane hydrocarbon measurements on SAGA3, J. Geophys. Res. 98, 16915–16932.Google Scholar
  32. Ehhalt, D. H. and Rudolph, J., 1984: On the importance of light hydrocarbons in multiphase atmospheric systems, Rep. Jül-1942, Kernforschungsanlage Jülich Gmbh, Jülich, Germany, p. 43.Google Scholar
  33. Feichter, J. and Crutzen, P. J., 1990: Parametrization of vertical tracer transport due to deep cumulus convection in a global transport model and its evaluation with 222Radon meaurements, Tellus 42B, 100–117.Google Scholar
  34. Fortuin, P., 1997: An ozone climatology based on ozonesonde measurements, Scientific report: WR 96–07 (KNMI report).Google Scholar
  35. Galbally, I. and Roy, C., 1980: Destruction of ozone at the earth's surface, Q. J. R. Meteorol. Soc. 106, 599–620.Google Scholar
  36. Gallardo-Klenner, L. G., 1996: Oxidized nitrogen in the troposphere: The role of lightning, PhD Thesis, Stockholm University, Sweden, p. 160.Google Scholar
  37. Gille, J., Bailey, P., and Craig, C., 1987: Proposed reference model for nitric acid, Adv. Space Res. 7, 25–35.Google Scholar
  38. Guenther, A, Hewitt, N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W., Pierce, T., Scholes, B., Streinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P. 1995: A global model of natural volatile organic compound emissions, J. Geophys. Res. 100, 8873–8892.Google Scholar
  39. Hao, W. M., Liu, M. H., and Crutzen, P. J., 1991: Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics based on FAO statistics for the period 1975–1980, in J. Goldammer (ed.), Fire in the Tropical Biota, Springer-Verlag, New York, pp. 440–462.Google Scholar
  40. Harris, G. W., Klemp, D., Burrows, J. P., and Zenker, T., 1989: Tunable diode laser measurements in the tropical atlantic boundary layer, paper presented at the International Conference on the Generation of Oxidants ion Regional and Global Scales, July 3–7, Norwich, U.K.Google Scholar
  41. Heikes, B., Lee, M., Bradshaw, J., Sandholm, S., Davis, D., Crawford, J., Rodriguez, J., Liu, S., Mc Keen, S., Thornton, D., Bandy, A., Gregory, G., Talbot, R., and Blake, D., 1996: Hydrogen peroxide and methylhydroperoxide distributions related to ozone and odd hydrogen over the North Pacific in the fall of 1991, J. Geophys. Res. 101, 1891–1905.Google Scholar
  42. Holton, J., 1990: On the global exchange of mass between the stratosphere and troposphere, J. Atmos. Sci. 47, 392–395.Google Scholar
  43. Holzinger, R., Warneke, C., Hansel, A., Jordan, A., Lindinger, W., Scharffe, D. H., Schade, G., and Crutzen, P. J., 1999: Biomass burning as a source of formaldehyde, acetaldehyde, methanol, acetone, acetonitrile, and hydrogen cyanide, Geophys. Res. Lett. 26, 1161–1164.Google Scholar
  44. Hough, A. M., 1991: Development of a two-dimensional global tropospheric model: Model chemistry, J. Geophys. Res. 96, 7325–7362.Google Scholar
  45. Houweling, S., Dentener, F. J., and Lelieveld, J., 1998: The impact of nonmethane hydrocarbon compounds on tropospheric photochemistry, J. Geophys. Res. 103, 10673–10696.Google Scholar
  46. Jacob, D. J., 1986: Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate, J. Geophys. Res. 91, 9807–9826.Google Scholar
  47. Jacob, D. J., Horowitz, L. W., Munger, J. W., Heikes, B. G, Dickerson, R. R., Artz, R. S., and Keene, W. C., 1995: Seasonal transition from NOx-to hydrocarbon — limited conditions for ozone production over the eastern United States in September, J. Geophys. Res. 100, 9315–9324.Google Scholar
  48. Jacob, D. J., Sillman, S., Logan, J. A., and Wofsy, S. C., 1989: Leat independent variables method for simulation of tropospheric ozone, J. Geophys. Res. 94, 8497–8510.Google Scholar
  49. Jaegle, L., Jacob, D. J., Wennberg, P. O., Spivakofsky, C. M., Hanisco, T. F., Lanzendorf, E. L., Hintsa, E. J., Fahey, D. W., Keim, E. R., Proffitt, M. H., Atlas, E., Flocke, F., Schauffler, S., McElroy, C. T., Midwinter, C., Pfister, L., and Wilson, J. C., 1997: Observed OH and HO2 in the upper troposphere suggest a major source from convective injection of peroxides, Geophys. Res. Lett. 24, 3181–3184.Google Scholar
  50. Jobson, B., Wu, Z., and Niki, H., 1994: Seasonal trends of isoprene, C2-C5 alkanes, and acetylene at a remote boreal site in Canada, J. Geophys. Res. 99,1589–1599.Google Scholar
  51. Johnson, B. J., Betterton, E. A., and Craig, D., 1996: Henry's law coefficients of formic and acetic acids, J. Atmos. Chem. 24, 113–119.Google Scholar
  52. Junge, C. E. and Gustafson, P. E., 1957: On the distribution of seasalt over the United States and its removal by precipitation, Tellus 9, 164–173.Google Scholar
  53. Kanakidou, M., Singh, H. B., Valentin, K. M., and Crutzen, P. J., 1991: A two-dimensional study of ethane and propane oxidation in the troposphere, J. Geophys. Res. 96, 15395–15413.Google Scholar
  54. Kanakidou, M., Crutzen, P. J., Zimmermann, P. H., and Bonsang, B., 1992: A 3-dimensional global study of the photochemistry of ethane and propane in the troposphere: Production and transport of organic nitrogen compounds, in Van Dop and Kallos (ed.), Air Pollution Modeling and its Application IX, Plenum, New York.Google Scholar
  55. Kanakidou, M. and Crutzen, P. J., 1993: Scale problems in global tropospheric chemistry modeling: Comparison of results obtained with a three-dimensional model, adopting longitudinally uniform and varying emissions of NOx and NMHC, Chemosphere 26, 1–4, 787–802.Google Scholar
  56. Kanakidou, M., Dentener, F. J., Crutzen, P. J., 1995a: A global three-dimensional study of the fate of HCFCs and HFC-134a in the troposphere, J. Geophys. Res. 100, 18781–18801.Google Scholar
  57. Kanakidou, M., Bonsang, B., and Poisson, N., 1995b: Impact of biomass burning emissions on the oxidizing capacity of the troposphere, in the Proceedings of the 4th Conference on Environmental Science and Technology, Lesvos, 4–7 Sept., pp. 797–802.Google Scholar
  58. Kanakidou, M., Poisson, N. et al., 1995c: Comparaison entre 11 modèles utilisés en France pour la description de la photochimie troposphérique, Proceedings of Atelier modelisation, MeteoFrance Toulouse, pp. 283–291.Google Scholar
  59. Kanakidou, M., Dentener, F. J., Brasseur, G. P., Berntsen, T. K., Collins, W. J., H auglustaine, D. A., Houweling, S., I saksen, I. S. A., Krol, M., Lawrence, M. G., Muller, J. F., Poisson, N., Roelofs, G. J., Wang, Y., and Wauben, W. M. F., 1999a: 3-D global simulations of tropospheric CO distributions — results of the GIM/IGAC intercomparison 1997 exercise, Chemosphere: Global Change Science 1, 263–282.Google Scholar
  60. Kanakidou, M., Dentener, F. J., Brasseur, G. P., Berntsen, T. K., Collins, W. J., Hauglustaine, D. A., Houweling, S., Isaksen, I. S. A., Krol, M., Law, K. S., Lawrence, M. G., Muller, J. F., Platevin, P. H., Poisson, N., Roelofs, G. J., Wang, Y., and Wauben, W. M. F., 1999b: 3-D global simulations of tropospheric chemistry with focus on ozone distributions — results of the GIM/IGAC intercomparison 1997 exercise, EUR 18842 EN, p. 79.Google Scholar
  61. Kasting, J.F. and Singh, H. B., 1986: Nonmethane hydrocarbons in the troposphere: Impact on odd hydrogen and odd nitrogen chemistry, J. Geophys. Res. 91, 13239–13256.Google Scholar
  62. Kesselmeier, J. and Staudt, M., 1999: Biogenic volatile organic compounds (VOC): An overview on emission, Physiology and Ecology, J. Atmos. Chem. 33, 23–88.Google Scholar
  63. Kondo, Y., Ziereis, H., Koike, M., Kawakami, S., Gregory, G., Sachse, G., Singh, H., Davis, D., and Merrill, J., Reactive nitrogen over the Pacific Ocean during PEM-West A, J. Geophys. Res. 101, 1809–1828.Google Scholar
  64. Komhyr, W. D., Oltmans, S. J., Franchois, P. R., Evans, W. F. J., and Matthews, W. A., 1989: The latitudinal distribution of ozone to 35 km altitude from ECC ozonesonde observations, 1985–1987, in R. D. Bojkov and P. Fabian (eds), Ozone in the Atmosphere, A. Deepak, Hampton, Va.Google Scholar
  65. Lacaux, J., Loemba-Ndembi, J., Lefevre, B., Cros, B., and Delmas, R., 1992: Biogenic emissions and biomass burning influences on the chemistry of fogwater and stratiform precipitations in the African equatorial forest, Atmos. Environ. 26A (4), 541–551.Google Scholar
  66. Lawrence, M. G., Crutzen, P. J., 1998: The impact of cloud particle gravitational settling on soluble trace gas distributions, Tellus 50B, 263–289.Google Scholar
  67. Law, K. S., P lanttevin, P. H., Thouret, V., Marenco, A., Asman, W. A. H., Lawrence, M., Crutzen, P. J., Muller, J. F., Hauglustaine, D., Kanakidou, M., 1999: Comparison between global chemistry transport model results and measurement of Ozone and water vapour by Airbus In-Service Aircraft (MOZAIC), Data, J. Geophys. Res., in press.Google Scholar
  68. Le Bras, G., Becker, K. H., Cox, R. A., Lesclaux, R., Moortgat, G. K., Sidebottom, H. W., Zellner, R., Barnes, I., and Wayne, R. P., 1995: Laboratory studies of chemistry related to tropospheric ozone ‘LACTOZ’, A joint EUROTRAC/CEC project final report, Garmish-Partenkirchen.Google Scholar
  69. Lelieveld, J. and Crutzen, P. J., 1991: The role of clouds in tropospheric photochemistry, J. Atmos. Chem. 12, 229–268.Google Scholar
  70. Lelieveld, J. and Van Dorland, R., 1995: Ozone chemistry changes in the troposphere and consequent radiative forcing of climate, in W. C. Wang and I. S. A. Isaksen (eds), Atmospheric Ozone as a Climate Gas, NATO ASI Series, Vol. I 32, Springer Verlag, New York, pp. 227–258.Google Scholar
  71. Lightfoot, P. D., Cox, R. A., Crowley, J. N., Destriau, M., Hayman, G. D., Jenkin, M. E., Moortgat, G. K., and Zabel, F., 1992: Organic peroxy radicals: kinetics, spectroscopy and tropospheric chemistry, Atmos. Environ. 26A, 1805–1961.Google Scholar
  72. ]Lindskog and Moldova, 1994: The influence of the origin, season and time of the day on the distribution of individual NMHC measured at Rorvik Sweden, Atmos. Environ. 28, 2383–2398.Google Scholar
  73. Liu, S., Trainer, M., Fehsenfeld, D., Parrish, D., Williams, E., Fahey, D., Hübler, G., and Murphy, C., 1987: Ozone production in the rural troposphere and the implications for regional and global ozone distributions, J. Geophys. Res. 92, 4191–4207.Google Scholar
  74. Lobert, J., Scharffe, D., Hao, W. M., Kuhlbusch, T., Seuwen, R., Warneck, P., and Crutzen, P. J., 1991: Experimental evaluation of biomass burning emissions: Nitrogen and carbon containing compounds, in Joel S. Levine (ed.), Global Biomass Burning, MIT Press, Cambidge, MA.Google Scholar
  75. Logan, J., 1994: Trends in the vertical distribution of ozone: An analysis of ozone sonde data, J. Geophys. Res. 99, 25553–25585.Google Scholar
  76. Logan, J., Prather, M., Wofsy, S., and McElroy, M. B., 1981: Tropospheric chemistry: A global perspective, J. Geophys. Res. 86, 7210–7254.Google Scholar
  77. Lowe, D. C., Schmidt, U., and Ehhalt, D. H., 1981: The tropospheric distribution of formaldehyde, Rep. Jül-1756, Kernforschungsanlage Jülich Gmbh, Jülich, Germany, p. 100.Google Scholar
  78. Maryland, G. and Rotty, R., 1984: Carbon dioxide emission from fossil fuels: A procedure for estimation and results for 1950–1982, Tellus 36B, 232–261.Google Scholar
  79. Martin, R. S., Westberg, H., Allwine, E., Ashman, L., Farmer, J. C., and Lamb, B., 1991: Measurements of isoprene and its atmospheric oxidation products in a central Pennsylvania deciduous forest, J. Atmos.Chem., 13, 1–32.Google Scholar
  80. Michelsen, H. A., Salawitch, R. J., Wennberg, P. O., and Anderson, J. C., 1994: Production of O1D from photolysis of O3, Geophys. Res. Lett. 21, 2227–2230.Google Scholar
  81. McKeen, S. A., Gierczak, T., Burkholder, J. B., Wennberg, P. O., Hanisco, T. F., Keim, E. R., Gao, R.-S., Liu, S. C., Ravishankara, A.R., and Fahey, D. W., 1997: The photochemistry of acetone in the upper troposphere: A source of odd-hydrogen radicals, Geophys. Res. Lett. 24, 3177.Google Scholar
  82. Montzka, S. A., Trainer, M., Goldan, P. D., Kuster, W. C., and Fehsenfeld, F. C., 1993: Isoprene and its oxidation products, methyl-vinyl ketone and methacrolein, in the rural troposphere, J. Geophys.Res. 98, 1101–1111.Google Scholar
  83. Muller, J.-F. and Brasseur, G. P., 1995: IMAGES: A three-dimensional chemical transport model of the global troposphere, J. Geophys. Res. 100, 16455–16490.Google Scholar
  84. Newell, R. E., Kidson, J. W., Vincent, D. G., and Boer, G. J., 1974: The General Circulation of the Tropical Atmosphere and Interactions with Extra Tropical Latitudes, Vol. 2, MIT Press, Cambridge, Mass.Google Scholar
  85. Olivier, J. G. J., Bouwman, A. F., and van der Maas et al., 1996: Description of EDGAR version 2.0: A set of global emission inventories of greenhouse gases and ozone depleting substances for all anthropogenic and most natural sources on a percountry basis on 1 x 1 grid, RIVM Report No.Google Scholar
  86. Olson, J., Prather, M., and Rasch, P. et al., 1997: Results from the Intergovernmental Panel of Change photochemical model intercomparison (PhotoComp), J. Geophys. Res. 102, 5979–5991.Google Scholar
  87. Oort, A., 1983: Global atmospheric circulation statistics 1958–1973, Rockville M. D.Google Scholar
  88. Poisson N., 1997a: Mécanisme détaillé de l'oxydation des NMHC dans l'atmosphère, Rapport Centre des Faibles Radioactivites, CNRS, Gif-sur-Yvette, France.Google Scholar
  89. Poisson, N., 1997b: Impact des hydrocarbures non méthaniques sur la chimie troposphérique, PhD Thesis, Université Paris 7, France, p. 253.Google Scholar
  90. Poisson, N., Kanakidou, M., Bonsang, B., Behmann, T., Burrows, J., Gölz, C., Harder, H., Lewis, A., Moortgat, G. K., Nunes, T., Pio, C., Platt, U., Sauer, F., Schuster, G., Seakins, R., Senzig, J., Seuwen, R., Trapp, D., Voltz-Thomas, A., Zenker, T., and Zitzelberger, R., 1999: The impact of natural nonmethane hydrocarbon oxidation on the free radical and ozone budgets above a eucalyptus forest, Chemosphere, in press.Google Scholar
  91. Prather, M. J. and Jacob, D. J., 1997: A persistent imbalance in HOx and NOx photochemistry of the upper troposphere driven by deep tropical convection, Geophys. Res. Lett. 24, 3189–3192.Google Scholar
  92. Price, C. and Rind, D., 1992: A simple lightning parameterization for calculating global lightning distributions, J. Geophys. Res. 97, 9919–9934.Google Scholar
  93. Rasmussen, R. A. and Khalil, M. A. K., 1988: Isoprene over the Amazon Basin, J. Geophys. Res. 93, 1417–1421.Google Scholar
  94. Roberts, J. M., 1990: The atmospheric chemistry of organic nitrates, Atmos. Environ. 24A, 243–287.Google Scholar
  95. Roberts, J. M., 1995: Reactive odd-nitrogen in the atmosphere, in H. B. Singh (ed.), Composition, Chemistry, and Climate of the Atmosphere, Van Nostrand Reinold Publ., New York, pp. 176–215.Google Scholar
  96. Rudolph, J. and Johnen, F., 1990: Measurements of light atmospheric hydrocarbons over the Atlantic in regions of low biological activity, J. Geophys. Res. 95, 20583–20591.Google Scholar
  97. Sanhueza, E. and Andreae, M. O., 1991: Emission of formic and acetic acids from tropical savanna soils, Geophys. Res. Lett. 18, 1707–1710.Google Scholar
  98. Sawada, S. and Totsuka, T., 1986: Natural and anthropogenic sources and fate of atmospheric ethylene, Atmos. Environ. 20, 821–832.Google Scholar
  99. Singh, H. B., Viezee, W., and Salas, L., 1988: Measurements of selected C2–C5 hydrocarbons in the troposphere: Latitudinal, vertical and temporal variations, J. Geophys. Res. 93, 15861–15878.Google Scholar
  100. Singh, H. B. and Zimmerman, P., 1992: Atmospheric distribution and sources of non-methane hydrocarbons, in J. O. Nriagu (ed.), Gaseous Pollutants: Characterization and Cycling, John Wiley & Sons, Inc., New York, 1992.Google Scholar
  101. Singh, H. B., Herlth, D., O'Hara, D., Zahnle, K., Bradshaw, J. D., Sandholm, S. T., Talbot, R., Gregory, G. L., Sachse, G. W., Blake, D. R., and Wofsy, S. C., 1994: Summertime distribution of PAN and other reactive nitrogen species in the northern high-latitude atmosphere of eastern Canada, J. Geophys. Res. 99, 1821–1835.Google Scholar
  102. Singh, H. B., Kanakidou, M., Crutzen, P. J., and Jacob, D., 1995: High concentrations and photochemical fate of oxygenated hydrogenated hydrocarbons in the global troposphere, Nature 378, 50–54.Google Scholar
  103. Singh, H. B., Herlth, D., Kolyer, R., Salas, L., Bradshaw, J., Sandholm, S., Davis, D., Crawford, J., Kondo, Y., Koike, M., Talbot, R., Gregory, G., Sachse, G., Browell, E., Blake, D., Rowland, F. S., Newell, R., Merrill, J. Heikes, B., Liu, S., Crutzen, P. J., and Kanakidou, M., 1996a: Reactive nitrogen and ozone over the Western Pacific: Distribution, partitioning, and sources, J. Geophys. Res. 101, 1793–1808.Google Scholar
  104. Singh, H. B., Gregory, G., Anderson, B., B rowell, E., Sachse, G., Davis, D., Crawford, J., Bradshaw, J., Talbot, R., Blake, D., Thornton, D., Newell, R., and Merill, J., 1996b: Low ozone in the marine boundary layer of the tropical Pacific Ocean: Photochemical loss, chlorine atoms, and entrainment, J. Geophys. Res. 101, 1907–1917.Google Scholar
  105. Tabazadeh, A., Toon, O. B., and Jensen, E. J., 1999: A surface chemistry model for nonreactive trace gas adsorption on ice: Implications for nitric acid scavenging by cirrus, Geophys. Res. Lett. 26, 2211–2214.Google Scholar
  106. Talbot, R., Beecher, K., Harris, R., and Cofer, W., 1988: Atmospheric geochemistry of formic and acetic acids at a mid-latitude temperature site, J. Geophys. Res. 93, 1638–1652.Google Scholar
  107. Talbot, R., Andreae, M. O., Berresheim, H, J acob, D., and Beecher, K., 1990: Sources ad sinks of formic, acetic and pyruvic acids over Central Amazonia: 2. Wet season, J. Geophys. Res. 95, 16799–16812.Google Scholar
  108. Talbot, R.W., Mosher, B.W., Heikes, B. G., Jacob, D. J., Munger, J.W., Daube, B. C., Keene, W. C., Maben, J. R., and Artz, R. S., 1995: Carboxylic acids in the rural continental atmosphere over the eastern United States during the shenandoah cloud and photochemistry experiment, J. Geophys. Res. 100, 9335–9343.Google Scholar
  109. Touaty, M., Bonsang, B., Kanakidou, M., and Poisson, N., 1996: Monitoring and model comparison of the seasonal variation of tropospheric light hydrocarbons at Amsterdam Island, Proceeding of the EUROTRAC Symposium 1996, Computational Mechamisms Publications, Southampton, pp. 613–619.Google Scholar
  110. Trapp, D. et al., 1998: Isoprene and its degradation products formaldehyde, methylvinyl ketone and methacrolein in a eucalyptus forest during the FIELDVOC'94 Campaign in Portugal, submitted to Chemosphere.Google Scholar
  111. Tuazon, E. C. and Atkinson, R., 1990: A product study of the gas-phase reaction of isoprene with the OH radical in the presence of NOx , Int. J. Chem. Kin. 22, 1221–1236.Google Scholar
  112. Valentin, K.M., 1990: Numerical modeling of the climatological and anthropogenic influences on the chemical composition of the troposphere since the last glacial maximum, PhD Thesis, University of Mainz, Germany, p. 238.Google Scholar
  113. Volz, A. and Kley, D., 1988: Evaluation of the Monsouris series of ozone measurements made at the nineteenth century, Nature 332, 240–242.Google Scholar
  114. Wang, Y., Jacob, D. J., and Logan, J. A., 1998: Global simulation of tropospheric O3-NOx-hydrocarbon chemistry, 3. Origin of tropospheric ozone and effects of nonmethane hydrocarbons, J. Geophys. Res. 103, 10757–10767.Google Scholar
  115. Warneck P., 1988: Volatile hydrocarbons and halocarbons, Chemistry of the Natural Atmosphere, Academic Press, pp. 223–267.Google Scholar
  116. Warneke, C., Karl, T., Judmaier, H., Hansel, A., Jordan, A., Lindinger, W., and Crutzen, P. J., 1999: Acetone, methanol, and other partially oxidized volatile organic emissions from dead plant matter by abiological processes: Significance for HO(X) chemistry, Global Biogeochemical Cycles 13, 9–17.Google Scholar
  117. Wayne, R. P., Barnes, I., Biggs, P., Burrows, J. P., Canosa-Mas, C. E., Hjorth, J., Le Bras, G., Moortgat, G. K., Perner, D., Poulet, G., Restelli G., and Sidebottom, H., The nitrate radical: Physics, chemistry and the atmosphere, in R. P. Wayne (ed.), Report No. 31, CEC-DG XII/E-1, Belgium, p. 203.Google Scholar
  118. Wesely, M. L., Parametrisation of surface resistances of gaseous dry deposition in regional-scale numerical models, Atmos. Environ. 23, 1293–1304.Google Scholar
  119. World Meteorological Organisation (WMO), 1994: Atmospheric ozone 1993, WMO Global Ozone Research and Monitoring Project Report, Geneva.Google Scholar
  120. Yienger, J. J. and Levy II, H., 1995: Empirical model of global soil-biogenic NOx emissions, J. Geophys. Res. 100, 11447–11464.Google Scholar
  121. Zimmermann, P. H., 1988: MOGUNTIA: A Handy global tracer model, in Han van Dop (ed.), Air Pollution Modeling and its Application VI, Plenum, New York.Google Scholar
  122. Zimmerman, P. R. et al., 1988: Measurements of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon boundary layer, J. Geophys.Res. 93, 1407–1416.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Nathalie Poisson
    • 1
  • Maria Kanakidou
    • 2
  • Paul J. Crutzen
    • 3
  1. 1.Unité Mixte CNRS-CEALaboratoire des Sciences du Climat et de l'EnvironnementGif-sur-Yvette CedexFrance
  2. 2.Department of Chemistry, Environmental Chemical Processes LaboratoryUniversity of CreteHeraklionGreece
  3. 3.Division of Atmospheric ChemistryMax-Planck Institute for ChemistryMainzGermany

Personalised recommendations