Photosynthesis Research

, Volume 60, Issue 1, pp 43–73 | Cite as

Enzymes of chlorophyll biosynthesis

  • Samuel I. Beale


The enzymes responsible for chlorophyll biosynthesis in plants, algae and cyanobacteria are identified and described, with emphasis on their protein composition and structure, required cofactors, physical and catalytic properties, protein-protein interactions and allosteric modulation of activity. Properties and features of the pathway that enable it to operate in a coordinated way while using unstable and light-sensitive intermediates in potentially hostile biochemical environments are discussed. The evolutionary relationships and possible origins of the chlorophyll biosynthetic enzymes are also discussed.

chloroplast development greening photosynthetic pigments porphyrins tetrapyrroles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abboud MM and Akhtar M (1976) Stereochemistry of hydrogen elimination in the enzymatic formation of the C-2--C-3 double bond of porphobilinogen. J Chem Soc Chem Commun 1976: 1007-1008Google Scholar
  2. Adra AN and Rebeiz CA (1998) Chloroplast biogenesis 81: Transient formation of divinyl chlorophyll a following a 2.5 ms light flash treatment of etiolated cucumber cotyledons. Photochem Photobiol 68: 852-856Google Scholar
  3. Alberti M, Burke DH and Hearst JE (1995) Structure and sequence of the photosynthesis gene cluster. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 1083-1106. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  4. Alwan AF, Mgbeje BI and Jordan PM (1989) Purification and properties of uroporphyrinogen III synthase (co-synthase) from an overproducing recombinant strain of Escherichia coli K-12. Biochem J 264: 397-402PubMedGoogle Scholar
  5. Amillet J-M and Labbe-Bois R (1995) Isolation of the gene HEM4 encoding uroporphyrinogen III synthase in Saccharomyces cerevisiae. Yeast 11: 419-424PubMedGoogle Scholar
  6. Apel K, Santel HJ, Redlinger TE and Falk K (1980) The protochlorophyllide holochrome of barley (Hordeum vulgare L.). Isolation and characterization of the NADPH:protochlorophyllide oxidoreductase. Eur J Biochem 111: 251-258PubMedGoogle Scholar
  7. Armstrong GA (1998) Greening in the dark: Light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms. J Photochem Photobiol B 43: 87-100Google Scholar
  8. Armstrong GA, Runge S, Frick G, Sperling U and Apel K (1995) Identification of protochlorophyllide oxidoreductases A and B. A branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol 108: 1505-1517PubMedGoogle Scholar
  9. Avissar YJ and Beale SI (1989a) Biosynthesis of tetrapyrrole pigment precursors: Pyridoxal requirement of the aminotransferase step in the formation of δaminolevulinate from glutamate in extracts of Chlorella vulgaris. Plant Physiol 89: 852-859Google Scholar
  10. Avissar YJ and Beale SI (1989b) The aminotransferase step in the formation of δ-aminolevulinic acid from glutamate: Isolation of the enzyme from Chlorella vulgaris, requirement for pyridoxal phosphate, and inhibition by gabaculine and acetylenic GABA. Plant Physiol 89: S-51Google Scholar
  11. Baker ME (1993) Protochlorophyllide reductase is homologous to human carbonyl reductase and pig 20β-hydroxysteroid dehydrogenase. Biochem J 300: 605-607Google Scholar
  12. Barnard GF and Akhtar M (1975) Stereochemistry of porphyrinogen carboxy-lyase reaction in haem biosynthesis. J Chem Soc Chem Commun 1975: 494-496Google Scholar
  13. Battersby AR, Fookes CJR, Gustafson-Potter KE, Matcham GWJ and McDonald E (1979a) Proof by synthesis that unrearranged hydroxymethylbilane is the product from deaminase and the substrate for cosynthetase in the biosynthesis of Uro'gen-III. J Chem Soc Chem Commun 1979: 1155-1158Google Scholar
  14. Battersby AR, Fookes CJR, Matcham GWJ and McDonald E (1979b) Order of assembly of the four pyrrole rings during biosynthesis of the natural porphyrins. J Chem Soc Chem Commun 1979: 539-541Google Scholar
  15. Battersby AR, Fookes CJR, Matcham GWJ, McDonald E and Hollenstein R (1983a) Biosynthesis of porphyrins and related molecules. Part 20. Purification of deaminase and studies on its mode of action. J Chem Soc Perkin Trans I 1983: 3031-3040Google Scholar
  16. Battersby AR, Fookes CJR, Hart G, Matcham GWJ and Pandey PS (1983b) Biosynthesis of porphyrins and related macrocycles. Part 21. The interaction of deaminase and its product (hydroxymethylbilane) and the relationship between deaminase and cosynthetase. J Chem Soc Perkin Trans I 1983: 3041-3047Google Scholar
  17. Baum SJ and Plane RA (1966) Kinetics of the incorporation of magnesium (II) into porphyrin. J Am Chem Soc 88: 910-913Google Scholar
  18. Bazzaz MB (1981) New chlorophyll chromophores isolated from a chlorophyll-deficient mutant of maize. Photobiochem Photobiophys 2: 199–207Google Scholar
  19. Bazzaz MB, Bradley CV and Brereton RG (1982) 4-Vinyl-4-desethyl chlorophyll a: Characterization of a new naturally occurring chlorophyll using fast atom bombardment, field desorption and ‘in beam’ electron impact mass spectroscopy. Tet Lett 23: 1211-1214Google Scholar
  20. Beale SI and Castelfranco PA (1974) The biosynthesis of δ-aminolevulinic acid in higher plants. II. Formation of 14 C-δ-aminolevulinic acid from labeled precursors in greening plant tissues. Plant Physiol 53: 297-303Google Scholar
  21. Beale SI, Gough SP and Granick S (1975) The biosynthesis of δ-aminolevulinic acid from the intact carbon skeleton of glutamic acid in greening barley. Proc Natl Acad Sci USA 72: 2719-2723PubMedGoogle Scholar
  22. Becerril JM and Duke SO (1989) Protoporphyrin IX content correlates with activity of photobleaching herbicides. Plant Physiol 90: 1175-1181Google Scholar
  23. Beer NS and Griffiths WT (1981) Purification of the enzyme NADPH:protochlorophyllide oxidoreductase. Biochem J 195: 83-92PubMedGoogle Scholar
  24. Begley TP and Young H (1989) Protochlorophyllide reductase. 1. Determination of the regiochemistry and the stereochemistry of the reduction of protochlorophyllide to chlorophyllide. J Am Chem Soc 111: 3095-3096Google Scholar
  25. Benz J and Rüdiger W (1981) Chlorophyll biosynthesis: Various chlorophyllides as exogenous substrates for chlorophyll synthase. Z Naturforsch 36c: 51-57Google Scholar
  26. Benz J, Wolf C and Rüdiger W (1980) Chlorophyll biosynthesis: Hydrogenation of geranylgeraniol. Plant Sci Lett 19: 225-230Google Scholar
  27. Bollivar DWand Beale SI (1995) Formation of the isocyclic ring of chlorophyll by isolated Chlamydomonas reinhardtii chloroplasts. Photosynth Res 43: 113-124Google Scholar
  28. Bollivar DW and Beale SI (1996) The chlorophyll biosynthetic enzyme Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase: Characterization and partial purification from Chlamydomonas reinhardtii and Synechocystis sp. PCC 6803. Plant Physiol 112: 105-114PubMedGoogle Scholar
  29. Bollivar DW, Jiang Z-Y, Bauer CE and Beale SI (1994a) Heterologous expression of the bchM gene product from Rhodobacter capsulatus and demonstration that it encodes S-adenosyl-L-methionine:Mg-protoporphyrin IX methyltransferase. J Bacteriol 176: 5290-5096PubMedGoogle Scholar
  30. Bollivar DW, Suzuki JY, Beatty JT, Dobrowolski JM and Bauer CE (1994b) Directed mutational analysis of bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus. J Mol Biol 237: 622-640CrossRefPubMedGoogle Scholar
  31. Bougri O and Grimm B (1996) Members of a low-copy number gene family encoding glutamyl-tRNA reductase are differentially expressed in barley. Plant J 9: 867-878CrossRefPubMedGoogle Scholar
  32. Brereton RG, Bazzaz MB, Santikarn S and Williams DH (1983) Positive and negative ion fast atom bombardment mass spectrometric studies on chlorophylls: Structure of 4-vinyl-4-desethyl chlorophyll b. Tet Lett 24: 5775-5778Google Scholar
  33. Brown JS (1985) Three photosynthetic antenna porphyrins in a primitive green alga. Biochim Biophys Acta 807: 143-146Google Scholar
  34. Bruyant P and Kannangara CG (1987) Biosynthesis of δ-aminolevulinate in greening barley leaves, VIII: Purification and characterization of the glutamate-tRNA ligase. Carlsberg Res Commun 52:99-109Google Scholar
  35. Budzikiewicz H and Taraz K (1971) Chlorophyll c. Tetrahedron 27: 1447-1460Google Scholar
  36. Bull AD, Pakes JF, Hoult RC, Rogers LJ and Smith AJ (1989) Tetrapyrrole biosynthesis in a gabaculin-tolerant mutant of Synechococcus 6301. Biochem Soc Trans 17: 911-912Google Scholar
  37. Burke DH, Alberti M and Hearst JE (1993a) bchFNBH bacteriochlorophyll synthesis genes of Rhodobacter capsulatus and identification of the third subunit of light-independent protochlorophyllide reductase in bacteria and plants. J Bacteriol 175: 2414-2422PubMedGoogle Scholar
  38. Burke DH, Alberti M and Hearst JE (1993b) The Rhodobacter capsulatus chlorin reductase-encoding locus, bchA, consists of three genes, bchX, bchY, and bchZ. J Bacteriol 175: 2407-2413PubMedGoogle Scholar
  39. Camadro J-M, Thome F, Brouillet N and Labbe P (1994) Purification and properties of protoporphyrinogen oxidase from the yeast Saccharomyces cerevisiae. Mitochondrial location and evidence for a precursor form of the protein. J Biol Chem 269: 32085-32091PubMedGoogle Scholar
  40. Castelfranco PA and Jones OTG (1975) Protoheme turnover and chlorophyll synthesis in greening barley tissue. Plant Physiol 55: 485-490Google Scholar
  41. Cavaleiro JAS, Kenner GW and Smith km (1974) Pyrroles and related compounds. Part XXXII. Biosynthesis of protoporphyrin-IX from coproporphyrinogen-III. J Chem Soc Perkin Trans I 1974: 1188-1194Google Scholar
  42. Chang T-E, Wegmann B and Wang W-Y (1990) Purification and characterization of glutamyl-tRNA synthetase: An enzyme involved in chlorophyll biosynthesis. Plant Physiol 93: 1641-1649Google Scholar
  43. Chen M-W, Jahn D, Schön A, O'Neill GP and Söll D (1990a) Purification and characterization of Chlamydomonas reinhardtii chloroplast glutamyl-tRNA synthetase, a natural misacylating enzyme. J Biol Chem 265: 4054-4057PubMedGoogle Scholar
  44. Chen M-W, Jahn D, O'Neill GP and Söll D (1990b) Purification of the glutamyl-tRNA reductase from Chlamydomonas reinhardtii involved in δ-aminolevulinic acid formation during chlorophyll biosynthesis. J Biol Chem 265: 4058-4063PubMedGoogle Scholar
  45. Chen TC and Miller GW(1974) Purification and characterization of uroporphyrinogen decarboxylase from tobacco leaves. Plant Cell Physiol 15: 993-1005Google Scholar
  46. Chereskin BA and Castelfranco PA (1982) Effects of iron and oxygen on chlorophyll biosynthesis. II. Observations on the biosynthetic pathway in isolated etiochloroplasts. Plant Physiol 69: 112-116Google Scholar
  47. Chereskin BA, Wong Y-S and Castelfranco PA (1982) In vitro synthesis of the chlorophyll isocyclic ring: Transformation of magnesium-protoporphyrin IX and magnesium-protoporphyrin IX monomethyl ester into magnesium-2,4-divinyl pheoporphyrin a 5. Plant Physiol 70: 987-993Google Scholar
  48. Chereskin BA, Castelfranco PA, Dallas JL and Straub KM (1983) Mg-2,4-divinyl pheoporphyrin a 5: The product of a reaction catalyzed in vitro by developing chloroplasts. Arch Biochem Biophys 226: 10-18PubMedGoogle Scholar
  49. Choquet Y, Rahire M, Girard-Bascou J, Erikson J and Rochaix J-D (1992) A chloroplast gene is required for the light-independent accumulation of chlorophyll in Chlamydomonas reinhardtii. EMBO J 11: 1697-1704PubMedGoogle Scholar
  50. Chow KS, Singh DP, Walker AR and Smith AG (1998) Two different genes encode ferrochelatase in Arabidopsis: Mapping, expression and subcellular targeting of the precursor proteins. Plant J 15: 531-541PubMedGoogle Scholar
  51. Crockett N, Alefounder PR, Battersby AR and Abell C (1991) Uroporphyrinogen III synthase: Studies on its mechanism of action, molecular biology and biochemistry. Tetrahedron 47: 6003-6014Google Scholar
  52. Dailey HA (1990) Conversion of coproporphyrinogen to protoheme in higher eukaryotes and bacteria: Terminal three enzymes. In: Dailey HA (ed) Biosynthesis of Heme and Chlorophylls, pp 123-161. McGraw-Hill, New York, USAGoogle Scholar
  53. Dehesh K and Ryberg M (1985) The NADPH-protochlorophyllide oxidoreductase is the major constituent of prolamellar bodies in wheat (Triticum aestivum L.). Planta 164: 396-399Google Scholar
  54. Dörnemann D, Kotzabasis K, Richter P, Breu V and Senger H (1989) The regulation of chlorophyll biosynthesis by the action of protochlorophyllide on glut-RNA-ligase. Bot Acta 102: 112-115Google Scholar
  55. Drolet M, Péloquin L, Echelard Y, Cousineau L and Sasarman A (1989) Isolation and nucleotide sequence of the hemA gene of Escherichia coli K12. Mol Gen Genet 216: 347-352PubMedGoogle Scholar
  56. Ebbon JG and Tait GH (1969) Studies on S-adenosylmethioninemagnesium protoporphyrin methyltransferase in Euglena gracilis strain Z. Biochem J 111: 573-582PubMedGoogle Scholar
  57. Elliott T (1989) Cloning, genetic characterization, and nucleotide sequence of the hemA-prfA operon of Salmonella typhimurium. J Bacteriol 171: 3948-3960PubMedGoogle Scholar
  58. Elliott T, Avissar YJ, Rhie G and Beale SI (1990) Cloning and sequence of the Salmonella typhimurium hemL gene and identification of the missing enzyme in hemL mutants as glutamate-1-semialdehyde aminotransferase. J Bacteriol 172: 7071-7084PubMedGoogle Scholar
  59. Ellsworth RK and Aronoff S (1968) Investigation on the biogenesis of chlorophyll. III. Biosynthesis of Mg-vinyl-phaeoporphine a 5 methylester from Mg-protoporphine IX monomethyl ester as observed in Chlorella mutants. Arch Biochem Biophys 125: 269-277PubMedGoogle Scholar
  60. Ellsworth RK and Aronoff S (1969) Investigation on the biogenesis of chlorophyll a. IV. Isolation and partial characterization of some biosynthetic intermediates between Mg-protoporphine IX monomethyl ester and Mg-vinyl-phaeoporphine a 5 methylester, obtained from Chlorella mutants. Arch Biochem Biophys 130: 374-383PubMedGoogle Scholar
  61. Ellsworth RK and St. Pierre ME (1976) Biosynthesis and inhibition of (–)-S-adenosyl-L-methionine:magnesium-protoporphy rin methyltransferase of wheat. Photosynthetica 10: 291-301Google Scholar
  62. Erskine PT, Senior N, Awan S, Lambert R, Lewis G, Tickle IJ, Sarwar M, Spencer P, Thomas P, Warren MJ, Shoolingin-Jordan PM, Wood SP and Cooper JB (1997) X-ray structure of 5-aminolaevulinate dehydratase, a hybrid aldolase. Nature Struct Biol 4: 1025-1031PubMedGoogle Scholar
  63. Ferreira GC and Dailey HA (1988) Mouse protoporphyrinogen oxidase. Kinetic parameters and demonstration of inhibition by bilirubin. Biochem J 250: 597-603PubMedGoogle Scholar
  64. Fischer H and Orth H (1940) Die Chemie des Pyrrols. Leipzig: Akademische VerlagsgesellschaftGoogle Scholar
  65. Fleischer EB, Choi EI, Hambright P and Stone A (1964) Porphyrin studies: kinetics of metalloporphyrin formation. Inorg Chem 3: 1284-1287Google Scholar
  66. Fookes CJR and Jeffrey SW (1989) The structure of chlorophyll c 3, a novel marine photosynthetic pigment. J Chem Soc Chem Commun 1989: 1827-1828Google Scholar
  67. Ford C and Wang W-Y (1980) Temperature-sensitive yellow mutants of Chlamydomonas reinhardtii. Mol Gen Genet 180: 5-10CrossRefGoogle Scholar
  68. Ford C, Mitchell S and Wang W-Y (1983) Characterization of NADPH:protochlorophyllide oxidoreductase in the y-7 and pc-1 y-7 mutants of Chlamydomonas reinhardtii. Mol Gen Genet 192: 290-292CrossRefGoogle Scholar
  69. Forreiter C and Apel K (1993) Light-independent and lightdependent protochlorophyllide-reducing activities and two distinct NADPH-protochlorophyllide oxidoreductase polypeptides in mountain pine (Pinus mugo). Planta 190: 536-545PubMedGoogle Scholar
  70. Franck F and Mathis P (1980) A short-lived intermediate in the photo-enzymatic reduction of protochlorophyll(ide) into chlorophyll (ide) at a physiological temperature. Photochem Photobiol 32: 799-803Google Scholar
  71. Friedmann HC, Duban ME, Valasinas A and Frydman B (1992) The enantioselective participation of (S)-and (R)-diaminovaleric acids in the formation of δ-aminolevulinic acid in cyanobacteria. Biochem Biophys Res Commun 185: 60-68PubMedGoogle Scholar
  72. Fuesler TP, Wright Jr LA and Castelfranco PA (1981) Properties of magnesium chelatase in greening etioplasts. Metal ion specificity and effect of substrate concentration. Plant Physiol 67: 246-249Google Scholar
  73. Fuesler TP, Wong Y-S and Castelfranco PA (1984) Localization of Mg-chelatase and Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase activities within isolated, developing cucumber chloroplasts. Plant Physiol 75: 662-664Google Scholar
  74. Fujita Y, Takagi H and Hase T (1996) Identification of the chlB gene product essential for light-independent chlorophyll biosynthesis in the cyanobacterium Plectonema boryanum. Plant Cell Physiol 37: 313-323PubMedGoogle Scholar
  75. Fujita Y, Takagi H and Hase T (1998) Cloning of the gene encoding a protochlorophyllide reductase: The physiological significance of the co-existence of light-dependent and-independent protochlorophyllide reduction systems in the cyanobacterium Plectonema boryanum. Plant Cell Physiol 39: 177-185PubMedGoogle Scholar
  76. Garlick S, Oren A and Padan E (1977) Occurrence of facultative anoxygenic photosynthesis among filamentous and unicellular cyanobacteria. J Bacteriol 129: 623-629PubMedGoogle Scholar
  77. Gibson KD, Laver WG and Neuberger A (1958) Formation of δ-aminolaevulic acid in vitro from succinyl-coenzyme a and glycine. Biochem J 70: 71-81PubMedGoogle Scholar
  78. Gibson LC and Hunter CN (1994) The bacteriochlorophyll biosynthesis gene, bchM, of Rhodobacter sphaeroides encodes S-adenosyl-L-methionine: Mg protoporphyrin IX methyltransferase. FEBS Lett 352: 127-130CrossRefPubMedGoogle Scholar
  79. Gibson LC, Willows RD, Kannangara CG, von Wettstein D and Hunter CN (1995) Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: Reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli. Proc Natl Acad Sci USA 92: 1941-1944PubMedGoogle Scholar
  80. Gibson LC, Marrison JL, Leech RM, Jensen PE, Bassham DC, Gibson M and Hunter CN (1996) A putative Mg chelatase subunit from Arabidopsis thaliana cv C24. Sequence and transcript analysis of the gene, import of the protein into chloroplasts, and in situ localization of the transcript and protein. Plant Physiol 111: 61-71PubMedGoogle Scholar
  81. Goericke R and Repeta DJ (1992) The pigments of Prochlorococcus marinus: The presence of divinylchlorophyll a and b in a marine procaryote. Limnol Oceanogr 37: 425-433Google Scholar
  82. Gorchein A (1972) Magnesium protoporphyrin chelatase activity in Rhodopseudomonas spheroides: Studies with whole cells. Biochem J 127: 97-106PubMedGoogle Scholar
  83. Gough SP and Kannangara CG (1979) Biosynthesis of δ-aminolevulinate in greening barley leaves. III. The formation of δ-aminolevulinate in tigrina mutants of barley. Carlsberg Res Commun 44: 403-416Google Scholar
  84. Granick S (1949) The pheoporphyrin nature of chlorophyll c. J Biol Chem 179: 505Google Scholar
  85. Granick S (1950) The structural and functional relationships between heme and chlorophyll. Harvey Lect 44: 220-245Google Scholar
  86. Griffiths WT (1974) Protochlorophyll and protochlorophyllide as precursors for chlorophyll synthesis in vitro. FEBS Lett 49: 196-200CrossRefPubMedGoogle Scholar
  87. Griffiths WT (1978) Reconstitution of chlorophyll formation by isolated etioplast membranes. Biochem J 174: 681-692PubMedGoogle Scholar
  88. Griffiths WT (1980) Substrate-specificity studies on protochlorophyllide reductase in barley (Hordeum vulgare) etioplast membranes. Biochem J 186: 267-278PubMedGoogle Scholar
  89. Griffiths WT and Jones OTG (1975) Magnesium 2,4-divinyl phaeoporphyrin a 5 as a substrate for chlorophyll biosynthesis in vitro. FEBS Lett 50: 355-358PubMedGoogle Scholar
  90. Griffiths WT, McHugh T and Blankenship RE (1996) The light intensity dependence of protochlorophyllide photoconversion and its significance to the catalytic mechanism of protochlorophyllide reductase. FEBS Lett 398: 235-238PubMedGoogle Scholar
  91. Grimm B (1990) Primary structure of a key enzyme in plant tetrapyrrole synthesis: Glutamate 1-semialdehyde aminotransferase. Proc Natl Acad Sci USA 87: 4169-4173Google Scholar
  92. Grimm B, Bull A, Welinder KG, Gough SP and Kannangara CG (1989) Purification and partial amino acid sequence of the glutamate 1-semialdehyde aminotransferase of barley and Synechococcus. Carlsberg Res Commun 54: 67-79PubMedGoogle Scholar
  93. Guo R, Luo M and Weinstein JD (1998) Magnesium-chelatase from developing pea leaves. Characterization of a soluble extract from chloroplasts and resolution into three required protein fractions. Plant Physiol 116: 605-615Google Scholar
  94. Hambright P (1975) Dynamic coordination chemistry of metalloporphyrins. In: Smith KM (ed) Porphyrins and Metalloporphyrins, pp 233-278. Elsevier Scientific Publishing Co., Amsterdam, The NetherlandsGoogle Scholar
  95. Hansson M and Kannangara CG (1997) ATPases and phosphate exchange activities in magnesium chelatase subunits of Rhodobacter sphaeroides. Proc Natl Acad Sci USA 94: 13351-13356PubMedGoogle Scholar
  96. Hart GJ and Battersby AR (1985) Purification and properties of uroporphyrinogen III synthase (co-synthase) from Euglena gracilis. Biochem J 232: 151-160PubMedGoogle Scholar
  97. Hart GJ, Miller AD, Leeper FJ and Battersby AR (1987) Biosynthesis of natural porphyrins: Proof that hydroxymethylbilane synthase (porphobilinogen deaminase) uses a novel binding group in its catalytic action. J Chem Soc Chem Commun 1987: 1762-1765Google Scholar
  98. He Q, Brune D, Nieman R and Vermaas W (1998) Chlorophyll a synthesis upon interruption and deletion of por coding for the light-dependent NADPH:protochlorophyllide oxidoreductase in a photosystem-I-less/chlLstrain of Synechocystis sp. PCC 6803. Eur J Biochem 253: 161-172PubMedGoogle Scholar
  99. Helfrich M and Rüdiger W (1992) Various metallopheophorbides as substrates for chlorophyll synthetase. Z Naturforsch 47c: 231-238Google Scholar
  100. Helfrich M, Schoch S, Lempert U, Cmiel E and Rüdiger W (1994) Chlorophyll synthetase cannot synthesize chlorophyll a′. Eur J Biochem 219: 267-275PubMedGoogle Scholar
  101. Helfrich M, Schoch S, Schäfer W, Ryberg M and Rüdiger W(1996) Absolute configuration of protochlorophyllide a and substrate specificity of NADPH-protochlorophyllide oxidoreductase. J Am Chem Soc 118: 2606-2611Google Scholar
  102. Helfrich M, Ross A, King GC, Turner AG and Larkum AWD (1999) Identification of [8-vinyl]-protochlorophyllide a in phototrophic prokaryotes and algae: Chemical and spectroscopic properties. Biochim Biophys Acta 1410: 262–272PubMedGoogle Scholar
  103. Hennig M, Grimm B, Jenny M, Müller R and Jansonius JN (1994) Crystallization and preliminary X-ray analysis of wild-type and K272A mutant glutamate 1-semialdehyde aminotransferase from Synechococcus. J Mol Biol 242: 591-594PubMedGoogle Scholar
  104. Hennig M, Grimm B, Contestabile R, John RA and Jansonius JN (1997) Crystal structure of glutamate-1-semialdehyde aminomutase: An a 2-dimeric vitamin –B6-dependent enzyme with asymmetry in structure and active site reactivity. Proc Natl Acad Sci USA 94: 4866-4871PubMedGoogle Scholar
  105. Higuchi M and Bogorad L (1975) The purification and properties of uroporphyrinogen I synthases and uroporphyrinogen III cosynthase. Interactions between the enzymes. Ann NY Acad Sci 244: 401-418PubMedGoogle Scholar
  106. Hill KL and Merchant S (1995) Coordinate expression of coproporphyrinogen oxidase and cytochrome c 6 in the green alga Chlamydomonas reinhardtii in response to changes in copper availability. EMBO J 14: 857-865PubMedGoogle Scholar
  107. Hinchigeri SB, Chan JC-S and Richards WR (1981) Purification of S-adenosyl-L-methionine:magnesium protoporphyrin methyltransferase by affinity chromatography. Photosynthetica 15: 351-359Google Scholar
  108. Holt AS and Morley HV (1959) A proposed structure for chlorophyll d. Can J Chem 37: 507-514Google Scholar
  109. Holtorf H and Apel K (1996) Transcripts of the two NADPH protochlorophyllide oxidoreductase genes porA and porB are differentially degraded in etiolated barley seedlings. Plant Mol Biol 31: 387-392PubMedGoogle Scholar
  110. Holtorf H, Reinbothe S, Reinbothe C, Bereza B and Apel K (1995) Two routes of chlorophyllide synthesis that are differentially regulated by light in barley. Proc Natl Acad Sci USA 92: 3254-3258Google Scholar
  111. Hörtensteiner S, Vicentini F and Matile P (1995) Chlorophyll breakdown in senescent cotyledons of rape, Brassica napus L.: Enzymatic cleavage of phaeophorbide a in vitro. New Phytol 129: 237-246Google Scholar
  112. Huang C and Liu X-Q (1992) Nucleotide sequence of the frxC, petB and trnL genes in the chloroplast genome of Chlamydomonas reinhardtii. Plant Mol Biol 18: 985-988PubMedGoogle Scholar
  113. Huang D-D and Wang W-Y (1986) Genetic control of chlorophyll biosynthesis: regulation of delta aminolevulinate synthesis in Chlamydomonas. Mol Gen Genet 205: 217-220Google Scholar
  114. Ikeuchi M and Murakami S (1982) Measurement and identification of NADPH:protochlorophyllide oxidoreductase solubilized with Triton X-100 from etioplast membranes of squash cotyledons. Plant Cell Physiol 23: 1089-1099Google Scholar
  115. Ilag LL, Kumar AM and Söll D (1994) Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. Plant Cell 6: 265-275CrossRefPubMedGoogle Scholar
  116. Ito H, Takaichi S, Tsuji H and Tanaka A (1994) Properties of synthesis of chlorophyll a from chlorophyll b in cucumber etioplasts. J Biol Chem 269: 22034-22038PubMedGoogle Scholar
  117. Ito H, Ohtsuka T and Tanaka A (1996) Conversion of chlorophyll b to chlorophyll a via 7-hydroxymethyl chlorophyll. J Biol Chem 271: 1475-1479PubMedGoogle Scholar
  118. Jacobs JM and Jacobs NJ (1984) Effect of unsaturated fatty acids on protoporphyrinogen oxidation, a step in heme and chlorophyll synthesis in plant organelles. Biochem Biophys Res Commun 123: 1157-1164PubMedGoogle Scholar
  119. Jacobs JM and Jacobs NJ (1987) Oxidation of protoporphyrinogen to protoporphyrin, a step in chlorophyll and haem biosynthesis. Biochem J 244: 219-224PubMedGoogle Scholar
  120. Jaffe EK (1993) Predicting the Zn(II) ligands in metalloproteins: Case study, porphobilinogen synthase. Comments Inorg Chem 15: 67-92Google Scholar
  121. Jaffe EK (1995) Porphobilinogen synthase, the first source of heme's asymmetry. J Bioenerg Biomembr 27: 169-179PubMedGoogle Scholar
  122. Jahn D (1992) Complex formation between glutamyl-tRNA synthetase and glutamyl-tRNA reductase during tRNA-dependent synthesis of 5-aminolevulinic acid in Chlamydomonas. FEBS Lett 314: 77-80PubMedGoogle Scholar
  123. Jensen PE, Gibson LCD, Henningsen KW and Hunter CN (1996a) Expression of the chlI, chlD, and chlH genes from the cyanobacterium Synechocystis PCC6803 in Escherichia coli and demonstration that the three cognate proteins are required for magnesium-protoporphyrin chelatase activity. J Biol Chem 271: 16662-16667PubMedGoogle Scholar
  124. Jensen PE, Willows RD, Petersen BL, Vothknecht UC, Stummann BM, Kannangara CG, von Wettstein D and Henningsen KW (1996b) Structural genes for Mg-chelatase subunits of barley: Xantha-f,-g and -h. Mol Gen Genet 250: 383-394PubMedGoogle Scholar
  125. Jensen PE, Gibson LCD and Hunter CN (1998) Determinants of catalytic activity with the use of purified I, D, and H subunits of the magnesium protoporphyrin IX chelatase from Synechocystis PCC6803. Biochem J 334: 335-344PubMedGoogle Scholar
  126. Jensen PE, Gibson LCD and Hunter CN (1999) ATPase activity associated with the magnesium-protoporphyrin IX chelatase enzyme of Synechocystis PCC6803: Evidence for ATP hydrolysis during Mg2+ insertion, and the MgATP-dependent interaction of the ChlI and ChlD subunits. Biochem J 339: 127–134PubMedGoogle Scholar
  127. Jones C, Jordan PM and Akhtar M (1984) Mechanism and stereochemistry of porphobilinogen deaminase and protoporphyrinogen IX oxidase reactions: Stereospecific manipulation of hydrogen atoms at the four methylene bridges during biosynthesis of haem. J Chem Soc Perkin Trans I 1984: 2625-2633Google Scholar
  128. Jones MC, Jenkins JM, Smith AG and Howe CJ (1994) Cloning and characterisation of genes for tetrapyrrole biosynthesis from the cyanobacterium Anacystis nidulans R2. Plant Mol Biol 24: 435-448CrossRefPubMedGoogle Scholar
  129. Jordan PM and Seehra JS (1979) The biosynthesis of uroporphyrinogen III: Order of assembly of the four porphobilinogen molecules in the formation of the tetrapyrrole ring. FEBS Lett 104: 364-366PubMedGoogle Scholar
  130. Jordan PM and Seehra JS (1980) Mechanism of action of 5-aminolevulinic acid dehydratase: Stepwise order of addition of the two molecules of 5-aminolevulinic acid in the enzymic synthesis of porphobilinogen. J Chem Soc Chem Commun 1980: 240-242Google Scholar
  131. Jordan PM and Berry A (1981) Mechanism of action of porphobilinogen deaminase. The participation of stable enzyme substrate covalent intermediates between porphobilinogen and the porphobilinogen deaminase from Rhodopseudomonas spheroides. Biochem J 195: 177-181PubMedGoogle Scholar
  132. Jordan PM and Warren MJ (1987) Evidence for a dipyrromethane cofactor at the catalytic site of E. coli porphobilinogen deaminase. FEBS Lett 225: 87-92PubMedGoogle Scholar
  133. Jordan PM, Cheung K-M, Sharma RP and Warren MJ (1993) 5-Amino-6-hydroxy-3,4,5,6-tetrahydropyran-2-one (HAT). A stable, cyclic form of glutamate 1-semialdehyde, the natural precursor for tetrapyrroles. Tet Lett 34: 1177-1180Google Scholar
  134. Kahn A and Kannangara CG (1987) Gabaculine-resistant mutants of Chlamydomonas reinhardtii with elevated glutamate 1-semialdehyde aminotransferase activity. Carlsberg Res Commun 5273-5281Google Scholar
  135. Kaneko T, Tanaka A, Sato S, Kotani H, Sazuka T, Miyajima N, Sugiura M and Tabata S (1995) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. I. Sequence features in the 1 Mb region from map positions 64% to 92% of the genome. DNA Res 2: 153-166PubMedGoogle Scholar
  136. Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M and Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3: 109-136PubMedGoogle Scholar
  137. Kannangara CG and Gough SP (1978) Biosynthesis of δ-aminolevulinate in greening barley leaves: Glutamate 1-semialdehyde aminotransferase. Carlsberg Res Commun 43: 185-194Google Scholar
  138. Kannangara CG, Gough SP and Girnth C (1981) δ-Aminolevulinate synthesis in greening barley. 2. Purification of enzymes. In: Akoyunoglou G (ed) Proceedings of the Fifth International Photosynthesis Congress Vol 5, pp 117-127. Balaban, Philadelphia, USAGoogle Scholar
  139. Kannangara CG, Gough SP, Oliver RP and Rasmussen SK (1984) Biosynthesis of δ-aminolevulinate in greening barley leaves. VI. Activation of glutamate by ligation to RNA. Carlsberg Res Commun 49: 417-437Google Scholar
  140. Kannangara CG, Gough SP, Bruyant P, Hoober JK, Kahn A and von Wettstein D (1988) tRNAGlu as a cofactor in δ-aminolevulinate biosynthesis: Steps that regulate chlorophyll synthesis. Trends Biochem Sci 13: 139-143PubMedGoogle Scholar
  141. Kannangara CG, Vothknecht UC, Hansson M and von Wettstein D (1997) Magnesium chelatase: Association with ribosomes and mutant complementation studies identify barley subunit Xantha-G as a functional counterpart of Rhodobacter subunit BchD. Mol Gen Genet 254: 85-92PubMedGoogle Scholar
  142. Kay SA and Griffiths WT (1983) Light-induced breakdown of NADPH:protochlorophyllide oxidoreductase in vitro. Plant Physiol 72: 229-236Google Scholar
  143. Kennedy GY (1970) Harderoporphyrin: A new porphyrin from the Harderian glands of the rat. Comp Biochem Physiol 36: 21-36PubMedGoogle Scholar
  144. Kikuchi G, Kumar A, Talmage P and Shemin D (1958) The enzymatic synthesis of δ-aminolevulinic acid. J Biol Chem 233: 1214-1219PubMedGoogle Scholar
  145. Klemm DJ and Barton LL (1987) Purification and properties of protoporphyrinogen oxidase from an anaerobic bacterium, Desulfovibrio gigas. J Bacteriol 169: 5209-5215PubMedGoogle Scholar
  146. Knaust R, Seyfried B, Schmidt L, Schulz R and Senger H (1993) Phototransformation of monovinyl and divinyl protochlorophyllide by NADPH:protochlorophyllide oxidoreductase of barley expressed in Escherichia coli. J Photochem Photobiol B 20: 161–166PubMedGoogle Scholar
  147. Kohashi M, Clement RP, Tse J and Piper WN (1984) Rat hepatic uroporphyrinogen III co-synthase. Purification and evidence for a bound folate coenzyme participating in the biosynthesis of uroporphyrinogen III. Biochem J 220: 755-765PubMedGoogle Scholar
  148. Kohno H, Furukawa T, Tokunaga R, Taketani S and Yoshinaga T (1996) Mouse coproporphyrinogen oxidase is a coppercontaining enzyme: Expression in Escherichia coli and sitedirected mutagenesis. Biochim Biophys Acta 1292: 156-162PubMedGoogle Scholar
  149. Koncz C, Mayerhofer R, Koncz-Kalman Z, Nawrath C, Reiss B, Redei GP and Schell J (1990) Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidopsis thaliana. EMBO J 9: 1337-1346PubMedGoogle Scholar
  150. Koonin EV (1993) A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication. Nucleic Acids Res 21: 2541-2547PubMedGoogle Scholar
  151. Koonin EV (1997) Evidence for a family of archaeal ATPases. Science 275: 1489-90PubMedGoogle Scholar
  152. Krishnasamy S and Wang W-Y (1990) Purification of the second enzyme of chlorophyll biosynthesis from Chlamydomonas reinhardtii. Plant Physiol 93: S-62Google Scholar
  153. Kruse E, Mock H-P and Grimm B (1995) Coproporphyrinogen III oxidase from barley and tobacco – sequence analysis and initial expression studies. Planta 196: 796-803PubMedGoogle Scholar
  154. Kruse E, Mock H-P and Grimm B (1997) Isolation and characterization of tobacco (Nicotiana tabacum) cDNA clones encoding proteins involved in magnesium chelation into protoporphyrin IX. Plant Mol Biol 35: 1053-1056PubMedGoogle Scholar
  155. Kumar AM, Csankovszki G and Söll D (1996) A second and differentially expressed glutamyl-tRNA reductase gene from Arabidopsis thaliana. Plant Mol Biol 30: 419-426PubMedGoogle Scholar
  156. Lascelles J and Hatch TP (1969) Bacteriochlorophyll and heme synthesis in Rhodopseudomonas spheroides: Possible role of heme in regulation of the branched biosynthetic pathway. J Bacteriol 98: 712-720PubMedGoogle Scholar
  157. Lebedev N, van Cleve B, Armstrong G and Apel K (1995) Chlorophyll synthesis in deetiolated (det340) mutant of Arabidopsis without NADPH-protochlorophyllide (PChlide) oxidoreductase (POR) A and photoactive PChlide-F655. Plant Cell 7: 2081-2090PubMedGoogle Scholar
  158. Lee HJ, Ball MD, Parham R and Rebeiz CA (1992) Chloroplast biogenesis 65. Enzymic conversion of protoporphyrin IX to Mg-protoporphyrin IX in a subplastidic membrane fraction of cucumber etiochloroplasts. Plant Physiol 99: 1134-1140Google Scholar
  159. Lermontova I, Kruse E, Mock H-P and Grimm B (1997) Cloning and characterization of a plastidal and a mitochondrial isoform of tobacco protoporphyrinogen IX oxidase. Proc Natl Acad Sci USA 94: 8895-8900PubMedGoogle Scholar
  160. Li J and Timko MP (1996) The pc-1 phenotype of Chlamydomonas reinhardtii results from a deletion mutation in the nuclear gene for NADPH:protochlorophyllide oxidoreductase. Plant Mol Biol 30: 15-37PubMedGoogle Scholar
  161. Li J, Goldschmidt-Clermont M and Timko MP (1993) Chloroplastencoded chlB is required for light-independent protochlorophyllide reductase activity in Chlamydomonas reinhardtii. Plant Cell 5: 1817-1829CrossRefPubMedGoogle Scholar
  162. Li J-M, Russell CS and Cosloy SD (1989) Cloning and structure of the hemA gene of Escherichia coli K-12. Gene 82: 209-217PubMedGoogle Scholar
  163. Lidholm J and Gustafsson P (1991) Homologues of the green algal gidA gene and the liverwort frxC gene are present on the chloroplast genomes of conifers. Plant Mol Biol 17: 787-798PubMedGoogle Scholar
  164. Lim SH, Witty M, Wallace-Cook AD, Ilag LI and Smith AG (1994) Porphobilinogen deaminase is encoded by a single gene in Arabidopsis thaliana and is targeted to the chloroplasts. Plant Mol Biol 26: 863-872PubMedGoogle Scholar
  165. Lin JM, Wegmann B, Chang TN and Wang W-Y (1989) The mechanism of heme inhibition of Glu-tRNA ligase. Plant Physiol 89: S-50Google Scholar
  166. Liu X-Q, Xu H and Huang C (1993) Chloroplast chlB is required for light-independent chlorophyll accumulation in Chlamydomonas reinhardtii. Plant Mol Biol 23: 297-308PubMedGoogle Scholar
  167. Loeb MR (1995) Ferrochelatase activity and protoporphyrin IX utilization in Haemophilus influenzae. J Bacteriol 177: 3613-3615PubMedGoogle Scholar
  168. Lopez JC, Ryan S and Blankenship RE (1996) Sequence of the bchG gene from Chloroflexus aurantiacus: Relationship between chlorophyll synthase and other polyprenyltransferases. J Bacteriol 178: 3369-3373PubMedGoogle Scholar
  169. Louie GV, Brownlie PD, Lambert R, Cooper JB, Blundell TL, Wood SP, Warren MJ, Woodcock SC and Jordan PM (1992) Structure of porphobilinogen deaminase reveals a flexible multidomain polymerase with a single catalytic site. Nature 359: 33-39PubMedGoogle Scholar
  170. Louie GV, Brownlie PD, Lambert R, Cooper JB, Blundell TL, Wood SP, Malashkevich VN, Hadener A, Warren MJ and Shoolingin-Jordan PM (1996) The three-dimensional structure of Escherichia coli porphobilinogen deaminase at 1.76-Å resolution. Proteins 25: 48-78PubMedGoogle Scholar
  171. Luo J and Lim CK (1993) Order of uroporphyrinogen III decarboxylation on incubation of porphobilinogen and uroporphyrinogen III with erythrocyte uroporphyrinogen decarboxylase. Biochem J 289: 529-532PubMedGoogle Scholar
  172. Madsen O, Sandal L, Sandal NN and Marcker KA (1993) A soybean coproporphyrinogen oxidase gene is highly expressed in root nodules. Plant Mol Biol 23: 35-43PubMedGoogle Scholar
  173. Maeda H, Watanabe T, Kobayashi M and Ikegami I (1992) Presence of two chlorophyll a0 molecules at the core of photosystem I. Biochim Biophys Acta 1099: 74-80Google Scholar
  174. Majumdar D, Avissar YJ, Wyche JH and Beale SI (1991) Structure and expression of the Chlorobium vibrioforme hemA gene. Arch Microbiol 156: 281-289PubMedGoogle Scholar
  175. Manning WM and Strain HH (1943) Chlorophyll d, a green pigment of red algae. J Biol Chem 151: 1-19Google Scholar
  176. Mapleston ER and Griffiths WT (1980) Light modulation of the activity of protochlorophyllide reductase. Biochem J 189: 125-133PubMedGoogle Scholar
  177. Martin GE, Timko MP and Wilks HM (1997) Purification and kinetic analysis of pea (Pisum sativum L.) NADPH:protochlorophyllide oxidoreductase expressed as a fusion with maltose-binding protein in Escherichia coli. Biochem J 325: 139-145PubMedGoogle Scholar
  178. Matringe M, Camadro J-M, Labbe P and Scalla R (1989) Protoporphyrinogen oxidase as a molecular target for diphenyl ether herbicides. Biochem J 260: 231-235PubMedGoogle Scholar
  179. Matters GL and Beale SI (1994) Structure and light-regulated expression of the gsa gene encoding the chlorophyll biosynthetic enzyme, glutamate-1-semialdehyde aminotransferase, in Chlamydomonas reinhardtii. Plant Mol Biol 24: 617-629CrossRefPubMedGoogle Scholar
  180. Mau Y-HL and Wang W-Y (1988) Biosynthesis of δ-aminolevulinic acid in Chlamydomonas reinhardtii. Study of the transamination mechanism using specifically labeled glutamate. Plant Physiol 86: 793-797Google Scholar
  181. Mayer SM, Weinstein JD and Beale SI (1987) Enzymatic conversion of glutamate to δ-aminolevulinate in soluble extracts of Euglena gracilis. J Biol Chem 262: 12541-12549PubMedGoogle Scholar
  182. Mayer SM, Gawlita E, Avissar YJ, Anderson VE and Beale SI (1993) Intermolecular nitrogen transfer in the enzymatic conversion of glutamate to δ-aminolevulinic acid by extracts of Chlorella vulgaris. Plant Physiol 101: 1029-1038PubMedGoogle Scholar
  183. Mayer SM, Rieble S and Beale SI (1994) Metal requirements of the enzymes catalyzing conversion of glutamate to δ-aminolevulinic acid in extracts of Chlorella vulgaris and Synechocystis sp. PCC 6803. Arch Biochem Biophys 312: 203-209PubMedGoogle Scholar
  184. Mayer SM, Willows RD and Beale SI (1997) Structure and expression of the Chlamydomonas reinhardtii gtr gene encoding the chlorophyll biosynthetic enzyme glutamyl-tRNA reductase. Plant Physiol 111: S-180Google Scholar
  185. Medlock AE and Dailey HA (1996) Human coproporphyrinogen oxidase is not a metalloprotein. J Biol Chem 271: 32507-32510PubMedGoogle Scholar
  186. Mehta PK and Christen P (1994) Homology of 1-aminocyclopropane-1-carboxylate synthase, 8-amino-7-oxononanoate synthase, 2-amino-6-caprolactam racemase, 2,2-dialkylglycine decarboxylase, glutamate-1-semialdehyde 2,1-aminomutase and isopenicillin-N-epimerase with aminotransferases. Biochem Biophys Res Commun 198: 138-143PubMedGoogle Scholar
  187. Meller E, Belkin S and Harel E (1975) The biosynthesis of δ-aminolevulinic acid in greening maize leaves. Phytochemistry 14: 2399-2402Google Scholar
  188. Miyashita H, Adachi K, Kurano N, Ikemoto H, Chihara M and Miyachi S (1997) Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll. Plant Cell Physiol 38: 274-281Google Scholar
  189. Mock H-P, Trainotti L, Kruse E and Grimm B (1995) Isolation, sequencing and expression of cDNA sequences encoding uroporphyrinogen decarboxylase from tobacco and barley. Plant Mol Biol 28: 245-256PubMedGoogle Scholar
  190. Molony MA, Hoober JK and Marks DB (1989) Kinetics of chlorophyll accumulation and formation of chlorophyll–protein complexes during greening of Chlamydomonas reinhardtii y-1 at 38°C. Plant Physiol 91: 1100-1106Google Scholar
  191. Nakayama M, Masuda T, Bando T, Yamagata H, Ohta H and Takamiya K (1998) Cloning and expression of the soybean chlH gene encoding a subunit of Mg-chelatase and localization of the Mg2+ concentration-dependent ChlH protein within the chloroplast. Plant Cell Physiol 39: 275-284PubMedGoogle Scholar
  192. Nandi DL and Shemin D (1973) δ-Aminolevulinic acid dehydratase of Rhodopseudomonas capsulata. Arch Biochem Biophys 158: 305-311PubMedGoogle Scholar
  193. Narita S, Tanaka R, Ito T, Okada K, Taketani S and Inokuchi H (1996) Molecular cloning and characterization of a cDNA that encodes protoporphyrinogen oxidase of Arabidopsis thaliana. Gene 182: 169-175PubMedGoogle Scholar
  194. Nasrulhaq-Boyce A, Griffiths WT and Jones OTG (1987) The use of continuous assays to characterize the oxidative cyclase that synthesizes the chlorophyll isocyclic ring. Biochem J 243: 23-29PubMedGoogle Scholar
  195. Nelson JR and Wakeham SG (1989) A phytol-substituted chlorophyll c from Emiliania huxleyi (Prymnesiophyceae). J Phycol 25: 761-766Google Scholar
  196. Ohtsuka T, Ito H and Tanaka A (1997) Conversion of chlorophyll b to chlorophyll a and the assembly of chlorophyll with apoproteins by isolated chloroplasts. Plant Physiol 113: 137-147PubMedGoogle Scholar
  197. Oliver RP and Griffiths WT (1981) Covalent labelling of the NADPH:protochlorophyllide oxidoreductase from etioplast membranes with [3H]N-phenylmaleimide. Biochem J 195: 93-1101PubMedGoogle Scholar
  198. Oliver RP and Griffiths WT (1982) Pigment-protein complexes of illuminated etiolated leaves. Plant Physiol 70: 1019-1025Google Scholar
  199. Omata T, Murata N and Satoh K (1984) Quinone and pheophytin in the photosynthetic reaction center II from spinach chloroplasts. Biochim Biophys Acta 765: 403-405Google Scholar
  200. Oren A and Padan E (1978) Induction of anaerobic, photoautotrophic growth in the cyanobacterium Oscillatoria limnetica. J Bacteriol 133: 558-563PubMedGoogle Scholar
  201. Oster U and Rüdiger W(1997) The G4 gene of Arabidopsis thaliana encodes a chlorophyll synthase of etiolated plants. Bot Acta 110: 420-423Google Scholar
  202. Oster U, Bauer CE and Rüdiger W (1997) Characterization of chlorophyll a and bacteriochlorophyll a synthases by heterologous expression in Escherichia coli. J Biol Chem 272: 9671-9676PubMedGoogle Scholar
  203. Papenbrock J, Gräfe S, Kruse E, Hänel F and Grimm B (1997) Mgchelatase of tobacco: Identification of a Chl D cDNA sequence encoding a third subunit, analysis of the interaction of the three 70 subunits with the yeast two-hybrid system, and reconstitution of the enzyme activity by co-expression of recombinant CHL D, CHL H and CHL I. Plant J 12: 981-990PubMedGoogle Scholar
  204. Parham R and Rebeiz CA (1992) Chloroplast biogenesis: [4-Vinyl] chlorophyllide a reductase is a divinyl chlorophyllide a-specific, NADPH-dependent enzyme. Biochemistry 31: 8460-8464PubMedGoogle Scholar
  205. Parham R and Rebeiz CA (1995) Chloroplast biogenesis 72: [4-Vinyl]chlorophyllide a reductase assay using divinyl chlorophyllide a as an exogenous substrate. Anal Biochem 231: 164-169PubMedGoogle Scholar
  206. Peters JW, Fisher K and Dean DR (1995) Nitrogenase structure and function: A biochemical-genetic perspective. Annu Rev Microbiol 49: 335-366PubMedGoogle Scholar
  207. Petersen PM, Hawker CJ, Stamford NPJ, Leeper FJ and Battersby AR (1998) Biosynthesis of porphyrins and related macrocycles. Part 50. Synthesis of the N-formyl-dihydro analogue of the spiro-intermediate and its interaction with uroporphyrinogen III synthase. J Chem Soc Perkin Trans I 1998: 1531-1539Google Scholar
  208. Petricek M, Rutberg L, Schröder I and Hederstedt L (1990) Cloning and characterization of the hemA region of the Bacillus subtilis chromosome. J Bacteriol 172: 2250-58PubMedGoogle Scholar
  209. Pontoppidan B and Kannangara CG (1994) Purification and partial characterization of barley glutamyl-tRNAGlu reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. Eur J Biochem 225: 529-537PubMedGoogle Scholar
  210. Pöpperl G, Oster U, Blos I and Rüdiger W (1997) Magnesium chelatase of Hordeum vulgare L. is not activated by light but inhibited by pheophorbide. Z Naturforsch 52c: 144-152Google Scholar
  211. Porra RJ, Schäfer W, Cmiel E, Katheder I and Scheer H (1993) Derivation of the formyl-group oxygen of chlorophyll b from molecular oxygen in greening leaves of a higher plant (Zea mays). FEBS Lett 323: 31-34PubMedGoogle Scholar
  212. Porra RJ, Schäfer W, Katheder I and Scheer H (1995) The derivation of the oxygen atoms of the 131-oxo and 3-acetyl groups of bacteriochlorophyll a from water in Rhodobacter sphaeroides cells adapting from respiratory to photosynthetic conditions: Evidence for an anaerobic pathway for the formation of the isocyclic ring E. FEBS Lett 371: 21-24PubMedGoogle Scholar
  213. Poulson R and Polglase WJ (1974) Aerobic and anaerobic coproporphyrinogenase activities in extracts from Saccharomyces cerevisiae. J Biol Chem 249: 6367-6371PubMedGoogle Scholar
  214. Radmer RJ and Bogorad L (1967) (–)S-adenosyl-L-methioninemagnesium protoporphyrin methyltransferase, an enzyme in the biosynthetic pathway of chlorophyll in Zea mays. Plant Physiol 42: 463-465PubMedGoogle Scholar
  215. Randolph-Anderson BL, Sato R, Johnson AM, Harris EH, Hauser CR, Oeda K, Ishige F, Nishio S, Gillham NW and Boynton JE (1998) Isolation and characterization of a mutant protoporphyrinogen oxidase gene from Chlamydomonas reinhardtii conferring resistance to porphyric herbicides. Plant Mol Biol 38: 839-859PubMedGoogle Scholar
  216. Reinbothe C, Apel K and Reinbothe S (1995a) A light-induced protease from barley plastids degrades NADPH:protochlorophyllide oxidoreductase complexed with chlorophyllide. Mol Cell Biol 15: 6206-6212PubMedGoogle Scholar
  217. Reinbothe S, Reinbothe C, Runge S and Apel K (1995b) Enzymatic product formation impairs both the chloroplast receptorbinding function as well as translocation competence of the NADPH:protochlorophyllide oxidoreductase, a nuclear-encoded plastid precursor protein. J Cell Biol 129: 299–308PubMedGoogle Scholar
  218. Reinbothe S, Runge S, Reinbothe C, van Cleve B and Apel K (1995c) Substrate-dependent transport of the NADPH:protochlorophyllide oxidoreductase into isolated plastids. Plant Cell 7: 161–172PubMedGoogle Scholar
  219. Reinbothe C, Lebedev N, Apel K and Reinbothe S (1997) Regulation of chloroplast protein import through a protochlorophyllideresponsive transit peptide. Proc Natl Acad Sci USA 94: 8890-8894PubMedGoogle Scholar
  220. Reinbothe S and Reinbothe C (1996a) Regulation of chlorophyll biosynthesis in angiosperms. Plant Physiol 111: 1-7Google Scholar
  221. Reinbothe S and Reinbothe C (1996b) The regulation of enzymes involved in chlorophyll biosynthesis. Eur J Biochem 237: 323-243PubMedGoogle Scholar
  222. Rieble S and Beale SI (1988) Enzymatic transformation of glutamate to δ-aminolevulinic acid by soluble extracts of Synechocystis sp. 6803 and other oxygenic prokaryotes. J Biol Chem 263: 8864-8871PubMedGoogle Scholar
  223. Rieble S and Beale SI (1991a) Purification of glutamyl-tRNA reductase from Synechocystis sp. PCC 6803. J Biol Chem 266: 9740-9744PubMedGoogle Scholar
  224. Rieble S and Beale SI (1991b) Separation and partial characterization of enzymes catalyzing δ-aminolevulinic acid formation in Synechocystis sp. PCC 6803. Arch Biochem Biophys 289: 289-297PubMedGoogle Scholar
  225. Rieble S and Beale SI (1992) Structure and expression of a cyanobacterial ilvC gene encoding acetohydroxyacid isomeroreductase. J Bacteriol 174: 7910-7918PubMedGoogle Scholar
  226. Rieble S, Ormerod JG and Beale SI (1989) Transformation of glutamate to δ-aminolevulinic acid by soluble extracts of Chlorobium vibrioforme. J Bacteriol 171: 3782-3787PubMedGoogle Scholar
  227. Rosé S, Frydman RB, de los Santos C, Sburlati A, Valasinas A and Frydman B (1988) Spectroscopic evidence for a porphobilinogen deaminase-tetrapyrrole complex that is an intermediate in the biosynthesis of uroporphyrinogen III. Biochemistry (USA) 27: 4871-4879Google Scholar
  228. Rüdiger W (1987) Chlorophyll synthetase and its implication for regulation of chlorophyll biosynthesis. In: Biggins J (ed) Progress in Photosynthesis Research, Vol. IV, pp 461-467. Martinus Nijhoff, BostonGoogle Scholar
  229. Rüdiger W(1997) Chlorophyll metabolism: From outer space down to the molecular level. Phytochemistry 46: 1151-1167Google Scholar
  230. Rüdiger W, Benz J and Guthoff C (1980) Detection and partial characterization of activity of chlorophyll synthetase in etioplast membranes. Eur J Biochem 109: 193-200PubMedGoogle Scholar
  231. Rudoi AB and Shcherbakov RA (1998) Analysis of the chlorophyll biosynthetic system in a chlorophyll b-less barley mutant. Photosynth Res 58: 71-80Google Scholar
  232. Sangwan I and O'Brian MR (1993) Expression of the soybean (Glycine max) glutamate 1-semialdehyde aminotransferase gene in symbiotic root nodules. Plant Physiol 102: 829-834PubMedGoogle Scholar
  233. Santel H-J and Apel K (1981) The protochlorophyllide holochrome of barley (Hordeum vulgare L.): The effect of light on the NADPH:protochlorophyllide oxidoreductase. Eur J Biochem 120: 95-103PubMedGoogle Scholar
  234. Schauder J-R, Jendrezejewski S, Abell A, Hart GJ and Battersby AR (1987) Stereochemistry of formation of the hydroxymethyl group of hydroxymethylbilane, the precursor of Uro'gen-III. J Chem Soc Chem Commun 1987: 436-438Google Scholar
  235. Scheumann V, Ito H, Tanaka A, Schoch S and Rüdiger W (1996) Substrate specificity of chlorophyll(ide) b reductase in etioplasts of barley (Hordeum vulgare L.). Eur J Biochem 242: 163-170PubMedGoogle Scholar
  236. Schimek C, Stadnichuk IN, Knaust R and Wehrmeyer W (1994) Detection of chlorophyll c 1 and magnesium-2,4-divinylpheoporphyrin a 5 monomethyl ester in cryptophytes. J Phycol 30: 621-627Google Scholar
  237. Schneegurt MA and Beale SI (1992) Origin of the chlorophyll b formyl oxygen atom in Chlorella vulgaris. Biochemistry 31: 11677-11683PubMedGoogle Scholar
  238. Schoch S (1978) The esterification of chlorophyllide a in greening bean leaves. Z Naturforsch 33c: 712-714Google Scholar
  239. Schoch S and Schäfer W (1978) Tetrahydrogeranylgeraniol, a precursor of phytol in the biosynthesis of chlorophyll a–localization of the double bonds. Z Naturforsch 33c: 408-412Google Scholar
  240. Schoch S, Lempert U and Rüdiger W (1977) Ñber die letzten Stufen der Chlorophyll-Biosynthese Zwischenprodkte zwischen Chlorophyllid und phytolhaltigem Chlorophyll. Z Pflanzenphysiol 83: 427-436Google Scholar
  241. Schoch S, Helfrich M, Wiktorsson B, Sundqvist C, Rüdiger W and Ryberg M (1995) Photoreduction of zinc protopheophorbide b with NADPH-protochlorophyllide oxidoreductase from etiolated wheat (Triticum aestivum L.). Eur J Biochem 242: 674-681Google Scholar
  242. Schulz R, Steinmüller K, Klaas M, Forreiter C, Rasmussen S, Hiller C and Apel K (1989) Nucleotide sequence of a cDNA coding for the NADPH-protochlorophyllide oxidoreductase (PCR) of barley (Hordeum vulgare L.) and its expression in Escherichia coli. Mol Gen Genet 217: 355–361PubMedGoogle Scholar
  243. Scott AI, Burton G, Jordan PM, Matsumoto H, Fagerness PE and Pryde LM (1980) N.M.R. spectroscopy as a probe for the study of enzyme-catalysed reactions. Further observations of preuroporphyrinogen, a substrate for uroporphyrinogen III cosynthetase. J Chem Soc Chem Commun 1980: 384-387Google Scholar
  244. Seehra JS, Jordan PM and Akhtar M (1983) Anaerobic and aerobic coproporphyrinogen III oxidases of Rhodopseudomonas spheroides. Mechanism and stereochemistry of vinyl group formation. Biochem J 209: 709-718PubMedGoogle Scholar
  245. Sharif AL, Smith AG and Abell C (1989) Isolation and characterisation of a cDNA clone for a chlorophyll synthesis enzyme from Euglena gracilis. The chloroplast enzyme hydroxymethylbilane synthase (porphobilinogen deaminase) is synthesised with a very long transit peptide in Euglena. Eur J Biochem 184: 353-359PubMedGoogle Scholar
  246. Shiau F-Y, Whyte BJ, Castelfranco PA and Smith km (1991) Partial syntheses of the isomerically pure magnesium(II) protoporphyrin IX monomethyl esters, and their identification. J Chem Soc Perkin Trans I 1991: 1781-1785Google Scholar
  247. Shieh J, Miller GW and Psenak M (1978) Properties of S-adenosyl-L-methionine-magnesium protoporphyrin IX methyltransferase from barley. Plant Cell Physiol 19: 1051-1059Google Scholar
  248. Shioi Y, Nagamine M, Kuroki M and Sasa T (1980) Purification by affinity chromatography and properties of uroporphyrinogen I synthetase from Chlorella regularis. Biochim Biophys Acta 616: 300-309PubMedGoogle Scholar
  249. Shoolingin-Jordan PM, Warren MJ and Awan SJ (1996) Discovery that the assembly of the dipyrromethane cofactor of porphobilinogen deaminase holoenzyme proceeds initially by the reaction of preuroporphyrinogen with the apoenzyme. Biochem J 316: 373-376PubMedGoogle Scholar
  250. Siepker LJ, Ford M, de Kock R and Kramer S (1987) Purification of bovine protoporphyrinogen oxidase: Immunological crossreactivity and structural relationship to ferrochelatase. Biochim Biophys Acta 913: 349-358PubMedGoogle Scholar
  251. Smith MA, Kannangara CG and Grimm B (1992) Glutamate 1-semialdehyde aminotransferase: Anomalous enantiomeric reaction and enzyme mechanism. Biochemistry 31: 11249-11254PubMedGoogle Scholar
  252. Smith MA, King PJ and Grimm B (1998) Transient-state kinetic analysis of Synechococcus glutamate 1-semialdehyde aminotransferase. Biochemistry 37: 319-329PubMedGoogle Scholar
  253. Soll J, Schultz G, Rüdiger W and Benz J (1983) Hydrogenation of geranylgeraniol. Two pathways exist in spinach chloroplasts. Plant Physiol 71: 849-854Google Scholar
  254. Spano AJ, He Z, Michel H, Hunt DF and Timko MP (1992a) Molecular cloning, nuclear gene structure, and developmental expression of NADPH:protochlorophyllide oxidoreductase in pea (Pisum sativum L.) Plant Mol Biol 18: 967–972Google Scholar
  255. Spano AJ, He Z and Timko MP (1992b) NADPH:protochlorophyllide oxidoreductases in white pine (Pinus strobus) and loblolly pine (P. teada). Mol Gen Genet 236: 86-95PubMedGoogle Scholar
  256. Sperling U, van Cleve B, Frick G, Apel K and Armstrong GA (1997) Overexpression of light-dependent PORA and PORB in plants depleted of endogenous POR by far-red light enhances seedling survival in white light and protects against photooxidative damage. Plant J 12: 649-658PubMedGoogle Scholar
  257. Spiller SC, Castelfranco AM and Castelfranco PA (1982) Effects of iron and oxygen of chlorophyll biosynthesis. I. In vivo observations on iron and oxygen-deficient plants. Plant Physiol 69: 107-111Google Scholar
  258. Stange-Thomann N, Thomann H-U, Lloyd AJ, Lyman H and Söll D (1994) A point mutation in Euglena gracilis chloroplast tRNAGlu uncouples protein and chlorophyll biosynthesis. Proc Natl Acad Sci USA 91: 7947-7951PubMedGoogle Scholar
  259. Stark WM, Hawker CJ, Hart GJ, Philippides A, Petersen PM, Lewis JD, Leeper FJ and Battersby AR (1993) Biosynthesis of porphyrins and related macrocycles. Part 40. Synthesis of a spirolactam related to the proposed spiro-intermediate for porphyrin biosynthesis: Inhibition of cosynthetase. J Chem Soc Perkin Trans I 1993: 2875-2891Google Scholar
  260. Suzuki JY and Bauer CA (1992) Light-independent chlorophyll synthesis: Involvement of the chloroplast gene chlL (frxC). Plant Cell 4: 929-940CrossRefPubMedGoogle Scholar
  261. Suzuki JY and Bauer CA (1995) Altered monovinyl and divinyl protochlorophyllide pools in bchJ mutants of Rhodobacter capsulatus. Possible monovinyl substrate discrimination of lightindependent protochlorophyllide reductase. J Biol Chem 270: 3732-3740CrossRefPubMedGoogle Scholar
  262. Suzuki JY, Bollivar DW and Bauer CE (1997) Genetic analysis of chlorophyll biosynthesis. Annu Rev Genet 31: 61-89PubMedGoogle Scholar
  263. Tait GH (1972) Coproporphyrinogenase activities in extracts of Rhodopseudomonas spheroides and Chromatium strain D. Biochem J 128: 1159-1169PubMedGoogle Scholar
  264. Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K and Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci USA 95: 12719-12723PubMedGoogle Scholar
  265. Tanaka R, Yoshida K, Nakayashiki T, Masuda T, Tsuji H, Inokuchi H and Tanaka A (1996) Differential expression of two hemA mRNAs encoding glutamyl-tRNA reductase proteins in greening cucumber seedlings. Plant Physiol 110: 1223-1230PubMedGoogle Scholar
  266. Tanaka R, Yoshida K, Nakayashiki T, Tsuji H, Inokuchi H, Okada K and Tanaka A (1997) The third member of the hemA family encoding glutamyl-tRNA reductase is primarily expressed in roots in Hordeum vulgare. Photosynth Res 53: 161-171Google Scholar
  267. Thomas J and Weinstein JD (1990) Measurement of heme efflux and heme content in isolated developing chloroplasts. Plant Physiol 94: 1414-1423Google Scholar
  268. Townley HE, Griffiths WT and Nugent JP (1998) A reappraisal of the mechanism of the photoenzyme protochlorophyllide reductase based on studies with the heterologously expressed protein. FEBS Lett 422: 19-22PubMedGoogle Scholar
  269. Tripathy BC and Rebeiz CA (1988) Chloroplast biogenesis 60. Conversion of divinyl protochlorophyllide to monovinyl protochlorophyllide in green(ing) barley, a dark monovinyl/light divinyl plant species. Plant Physiol 87: 89-94Google Scholar
  270. Valera V, Fung M, Wessler AN and Richards WR (1987) Synthesis of 4R-and 4S-tritium labeled NADPH for the determination of the coenzyme stereospecificity of NADPH:protochlorophyllide oxidoreductase. Biochem Biophys Res Commun 148: 515-520PubMedGoogle Scholar
  271. Verkamp E and Chelm BK (1989) Isolation, nucleotide sequence, and preliminary characterization of the Escherichia coli K-12 hemA gene. J Bacteriol 171: 4728-4735PubMedGoogle Scholar
  272. vonWettstein D, Henningsen KW, Boynton JE, Kannangara CG and Nielsen OF (1971) The genic control of chloroplast development in barley. In: Boardman NK, Linnane AW and Smillie RM (eds) Autonomy and Biogenesis of Mitochondria and Chloroplasts, pp 205-223. North Holland Publishing Co., Amsterdam, The NetherlandsGoogle Scholar
  273. Vothknecht UC, Kannangara CG and von Wettstein D (1996) Expression of catalytically active barley glutamyl tRNAGlu reductase in Escherichia coli as a fusion protein with glutathione S-transferase. Proc Natl Acad Sci USA 93: 9287-9291PubMedGoogle Scholar
  274. Vothknecht UC, Kannangara CG and von Wettstein D (1998) Barley glutamyl tRNAGlu reductase: Mutations affecting haem inhibition and enzyme activity. Phytochemistry 47: 513-519PubMedGoogle Scholar
  275. Wakao N, Yokoi N, Isoyama N, Hiraishi A, Shimada K, Kobayashi M, Kise H, Iwaki M, Itoh S, Takaichi S and Sakurai Y (1996) Discovery of natural photosynthesis using Zn-containing bacteriochlorophyll in an aerobic bacterium Acidiphilium rubrum. Plant Cell Physiol 37: 889-893Google Scholar
  276. Walker CJ and Griffiths WT (1988) Protochlorophyllide reductase: A flavoprotein? FEBS Lett 239: 259-262Google Scholar
  277. Walker CJ and Weinstein JD (1991a) Further characterization of the magnesium chelatase in isolated developing cucumber chloroplasts. Substrate specificity, regulation, intactness, and ATP requirements. Plant Physiol 95: 1189-1196Google Scholar
  278. Walker CJ and Weinstein JD (1991b) In vitro assay of the chlorophyll biosynthetic enzyme Mg-chelatase: Resolution of the activity into soluble and membrane-bound fractions. Proc Natl Acad Sci USA 88: 5789-5793PubMedGoogle Scholar
  279. Walker CJ and Weinstein JD (1994) The magnesium insertion step of chlorophyll biosynthesis is a two-stage reaction. Biochem J 299: 277-284PubMedGoogle Scholar
  280. Walker CJ and Weinstein JD (1995) Re-examination of the localization of Mg-chelatase within the chloroplast. Physiol Plant 94: 419-424Google Scholar
  281. Walker CJ and Willows RD (1997) Mechanism and regulation of Mg-chelatase. Biochem J 327: 321-333PubMedGoogle Scholar
  282. Walker CJ, Mansfield KE, Rezzano IN, Hanamoto CH, Smith KM and Castelfranco PA (1988) The magnesium-protoporphyrin IX (oxidative) cyclase system. Studies on the mechanism and specificity of the reaction sequence. Biochem J 255: 685-692PubMedGoogle Scholar
  283. Walker CJ, Mansfield KE, Smith KM and Castelfranco PA (1989) Incorporation of atmospheric oxygen into the carbonyl functionality of the protochlorophyllide isocyclic ring. Biochem J 257: 599-602PubMedGoogle Scholar
  284. Walker CJ, Castelfranco PA and Whyte BJ (1991) Synthesis of divinyl protochlorophyllide. Enzymological properties of the Mg-protoporphyrin IX monomethyl ester oxidative cyclase system. Biochem J 276: 691-697PubMedGoogle Scholar
  285. Walker CJ, Hupp LR and Weinstein JD (1992) Activation and stabilization of Mg-chelatase activity by ATP as revealed by a novel in vitro continuous assay. Plant Physiol Biochem 30: 263-269Google Scholar
  286. Walker CJ, Kannangara CG and von Wettstein D (1997) Identification of xantha l-35 and viridis k-23 as mutants of the Mg-protoporphyrin monomethyl ester cyclase of chlorophyll synthesis in barley (Hordeum vulgare). Plant Physiol 114: S-149Google Scholar
  287. Wang W-Y, Huang D-D, Stachon D, Gough SP and Kannangara CG (1984) Purification, characterization, and fractionation of the δ-aminolevulinic acid synthesizing enzymes from light-grown Chlamydomonas reinhardtii cells. Plant Physiol 74: 569-575Google Scholar
  288. Warren MJ and Jordan PM (1988) Further evidence for the involvement of a dipyrromethene cofactor at the active site of porphobilinogen deaminase. Biochem Soc Trans 16: 963-965Google Scholar
  289. Weinstein JD and Beale SI (1985) Enzymatic conversion of glutamate to δ-aminolevulinate in soluble extracts of the unicellular green alga, Chlorella vulgaris. Arch Biochem Biophys 237: 454-464PubMedGoogle Scholar
  290. Weinstein JD, Mayer SM and Beale SI (1987) Formation of δ-aminolevulinic acid from glutamic acid in algal extracts. Separation into an RNA and three required enzyme components by serial affinity chromatography. Plant Physiol 84: 244-250Google Scholar
  291. Weinstein JD, Howell RW, Leverette RD, Grooms SY, Brignola PS, Mayer SM and Beale SI (1993) Heme inhibition of δ-aminolevulinic acid synthesis is enhanced by glutathione in cell-free extracts of Chlorella. Plant Physiol 101: 657-665PubMedGoogle Scholar
  292. Wenzlau JM and Berry-Lowe SL (1995) Nucleotide sequence of a gene encoding glutamate 1-semialdehyde aminotransferase (U10278) from Arabidopsis thaliana ‘Columbia’. Plant Physiol 108: 1342Google Scholar
  293. Whyte BJ and Castelfranco PA (1993) Further observations on the Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase system. Biochem J 290: 355-359PubMedGoogle Scholar
  294. Whyte BJ, Vijayan P and Castelfranco PA (1992) In vitro synthesis of protochlorophyllide: Effects of Mg2+ and other cations in the reconstituted (oxidative) cyclase. Plant Physiol Biochem 30: 279-284Google Scholar
  295. Wiktorsson B, Ryberg M and Sundqvist C (1996) Aggregation of NADPH-protochlorophyllide oxidoreductase-pigment complexes is favoured by protein phosphorylation. Plant Physiol Biochem 34: 23-34Google Scholar
  296. Williams DC, Morgan GS, McDonald E and Battersby AR (1981) Purification of porphobilinogen deaminase from Euglena gracilis and studies of its kinetics. Biochem J 193: 301-310PubMedGoogle Scholar
  297. Willows RD, Kannangara CG and Pontoppidan B (1995) Nucleotides of tRNA (Glu) involved in recognition by barley chloroplast glutamyl-tRNA synthetase and glutamyl-tRNA reductase. Biochim Biophys Acta 1263: 228-234PubMedGoogle Scholar
  298. Willows RD, Gibson LCD, Kannangara CG, Hunter CN and von Wettstein D (1996) Three separate proteins constitute the magnesium chelatase of Rhodobacter sphaeroides. Eur J Biochem 235: 438-443PubMedGoogle Scholar
  299. Willstätter R and Stoll A (1913) Untersuchungen über chlorophyll. Methoden und ergebnisse. 424 pp. Springer, Berlin, GermanyGoogle Scholar
  300. Witty M, Wallace-Cook AD, Albrecht H, Spano AJ, Michel H, Shabanowitz J, Hunt DF, Timko MP and Smith AG (1993) Structure and expression of chloroplast-localized porphobilinogen deaminase from pea (Pisum sativum L.) isolated by redundant polymerase chain reaction. Plant Physiol 103: 139-147CrossRefPubMedGoogle Scholar
  301. Wong Y-S and Castelfranco PA (1984) Resolution and reconstitution of the Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase, the enzyme system responsible for the formation of the chlorophyll isocyclic ring. Plant Physiol 75: 658-661Google Scholar
  302. Wong Y-S and Castelfranco PA (1985) Properties of the Mgprotoporphyrin IX monomethyl ester (oxidative) cyclase system. Plant Physiol 79: 730-733Google Scholar
  303. Wong Y-S, Castelfranco PA, Goff DA and Smith km (1985) Intermediates in the formation of the chlorophyll isocyclic ring. Plant Physiol 79: 725-729Google Scholar
  304. Woodward RB (1960) The total synthesis of chlorophyll. Pure Appl Chem 2: 383-404Google Scholar
  305. Xu K and Elliott T (1993) An oxygen-dependent coproporphyrinogen oxidase encoded by the hemF gene of Salmonella typhimurium. J Bacteriol 175: 4990-4999PubMedGoogle Scholar
  306. Xu K and Elliott T (1994) Cloning, DNA sequence, and complementation analysis of the Salmonella typhimurium hemN gene encoding a putative oxygen-independent coproporphyrinogen III oxidase. J Bacteriol 176: 3196-3203PubMedGoogle Scholar
  307. Yamato S, Ida T, Katagiri M and Ohkawa H (1995) A tobacco soluble protoporphyrinogen-oxidizing enzyme similar to plant peroxidases in their amino acid sequences and immunochemical reactivity. Biosci Biotechnol Biochem 59: 558-559PubMedGoogle Scholar
  308. Zaman Z and Akhtar M (1976) Mechanism and stereochemistry of vinyl-group formation in haem biosynthesis. Eur J Biochem 61: 215-223PubMedGoogle Scholar
  309. Zapata M and Garrido JL (1997) Occurrence of phytylated chlorophyll c in Isochrysis galbana and Isochrysis sp. (clone T-ISO) (Prymnesiophyceae). J Phycol 33: 209-214Google Scholar
  310. Zsebo KM and Hearst JE (1984) Genetic-physical mapping of a photosynthetic gene cluster from R. capsulata. Cell 37: 937-947CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Samuel I. Beale
    • 1
  1. 1.Division of Biology and MedicineBrown UniversityProvidenceUSA

Personalised recommendations