Advertisement

Plant Molecular Biology

, Volume 40, Issue 6, pp 945–957 | Cite as

A leucine-rich repeat receptor-like protein kinase (LRPKm1) gene is induced in Malus × domestica by Venturia inaequalis infection and salicylic acid treatment

  • M. Komjanc
  • S. Festi
  • L. Rizzotti
  • L. Cattivelli
  • F. Cervone
  • G. De Lorenzo
Article

Abstract

A cDNA clone encoding a leucine-rich repeat (LRR) receptor-like protein kinase (LRPKm1) of Malus × domestica cv. Florina has been isolated using as a heterologous probe a cloned gene encoding a polygalacturonase-inhibiting protein (PGIP) of Phaseolus vulgaris L. A genomic clone containing the 5′-regulatory region and a 5′ portion of the open reading frame of the LRPKm1 gene has also been isolated. An open reading frame of 2997 nt (999 amino acids) was present in the cDNA clone, encoding a receptor-like protein comprising a 21 amino acid signal peptide for secretion, a leucine zipper, 23 LRRs, a putative membrane-spanning region and a serine/threonine protein kinase domain. LRPKm1 shows homology to the A. thaliana receptor-like protein kinase RLK5 and, to a minor extent, to PGIP. The LRPKm1 region from +5 to +600 exhibits an alternative reading frame that encodes a product corresponding to a proline-rich protein fragment homologous to several hydroxyproline-rich proteins. Southern blot analysis showed that LRPKm1 belongs to a multigene family and that there is length polymorphism of the hybridizing restriction fragments among different M. × domestica cultivars. Northern blot analysis was carried out on mRNA extracted from infected leaves of either cv. Florina (resistant to Venturia inaequalis) or cv. Golden Delicious (susceptible to V. inaequalis), and from tissues treated with salicylic acid. A 3500 bp transcript hybridizing at high stringency with the LRPKm1 cDNA accumulated in response to infection or salicylic acid treatment. Transcript accumulation was more intense in the incompatible interaction than in the compatible one. The possible involvement of this receptor-like protein kinase in resistance of apple to phytopathogenic fungi is discussed.

apple defence response leucine-rich repeat PGIP receptor kinase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bent, A.F., Kunkel, B.N., Dahlbeck, D., Brown, K.L., Schmidt, R., Giraudat, J., Leung, J. and Staskawicz, B.J. 1998. RPS2of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science 265: 1856–1860.Google Scholar
  2. Bergmann, C., Ito, Y., Singer, D., Albersheim, P., Darvill, A.G., Benhamou, N., Nuss, L., Salvi, G., Cervone, F. and De Lorenzo, G. 1994. Polygalacturonase-inhibiting protein accumulates in Phaseolus vulgarisL. in response to wounding, elicitors, and fungal infection. Plant J. 5: 625–634.PubMedGoogle Scholar
  3. Clark, S.E., Williams, R.W. and Meyerowitz, E.M. 1997. The CLAVATA1gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89: 575–585.PubMedGoogle Scholar
  4. Davies, K.M. 1993. Nucleotide sequence of a cDNA clone encoding the precursor of ribulose-1,5-bisphosphate carboxylase small subunit from Malus. Plant Physiol. 101: 693–694.PubMedGoogle Scholar
  5. De Lorenzo, G. and Cervone, F. 1997. Polygalacturonase-inhibiting proteins (PGIPs): their role in specificity and defense against pathogenic fungi. In: G. Stacey and N.T. Keen (Eds.), Plant-Microbe Interactions, vol. 3, Chapman & Hall, New York, pp. 76–93.Google Scholar
  6. De Lorenzo, G., Cervone, F., Bellincampi, D., Caprari, C., Clark, A.J., Desiderio, A., Devoto, A., Forrest, R., Leckie, F., Nuss, L., et al. 1994. Polygalacturonase, PGIP and oligogalacturonides in cell-cell communication. Biochem. Soc. Trans. 22: 396–399.Google Scholar
  7. Dellaporta, S.L., Wood, J. and Hicks, J.B. 1984. Molecular Biology of Plants: A Laboratory Course Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  8. Denhardt, D.T. 1966. A membrane-filter technique for the detection of complementary DNA. Biochem. Biophys. Res. Commun. 23: 641–649.PubMedGoogle Scholar
  9. Devoto, A., Clark, A.J., Nuss, L., Cervone, F. and De Lorenzo, G. 1997. Developmental and pathogen-induced accumulation of transcripts of polygalacturonase-inhibiting protein in Phaseolus vulgarisL. Planta 202: 284–292.Google Scholar
  10. Dixon, M.S., Jones, D.A., Keddie, J.S., Thomas, C.M., Harrison, K. and Jones, J.D.G. 1996. The tomato Cf-2disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 84: 451–459.PubMedGoogle Scholar
  11. Fauth, M., Merten, A., Hahn, M.G., Jeblick, W. and Kauss, H. 1996. Competence for elicitation of H2O2 in hypocotyls of cucumber is induced by breaching the cuticle and is enhanced by salicylic acid. Plant Physiol. 110: 347–354.PubMedGoogle Scholar
  12. Frediani, M., Cremonini, R., Salvi, G., Caprari, C., Desiderio, A., D'Ovidio, R., Cervone, F. and De Lorenzo, G. 1993. Cytological localization of the pgipgenes in the embryo suspensor cells of Phaseolus vulgarisL. Theor. Appl. Genet. 87: 369–373.Google Scholar
  13. Gessler, C. and Stumm, D: 1984. Infection and stroma formation by Venturia inaequalison apple leaves with different degrees of susceptibility to scab. Phytopath. Z. 110: 119–126.Google Scholar
  14. Goldsbrough, A.P., Albrecht, H. and Stratford, R. 1993. Salicylic acid-inducible binding of a tobacco nuclear protein to a 10 bp sequence which is highly conserved amongst stress-inducible genes. Plant J. 3: 563–571.PubMedGoogle Scholar
  15. Grant, M.R., Godiard, L., Straube, E., Ashfield, T., Lewald, J., Sattler, A., Innes, R.W. and Dangl, J.L. 1995. Structure of the Arabidopsis RPM1gene enabling dual specificity disease resistance. Science 269: 843–846.PubMedGoogle Scholar
  16. Gum Jr, J.R., Hicks, J.W., Toribara, N.W., Siddiki, B. and Kim, Y.S. 1994. Molecular cloning of human intestinal mucin (MUC2) cDNA. Identification of the amino terminus and overall sequence similarity to prepro-von Willebrand factor. J. Biol. Chem. 269: 2440–2446.PubMedGoogle Scholar
  17. Hammond-Kosack, K.E. and Jones, J.D.G. 1997. Plant disease resistance genes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 575–607.PubMedGoogle Scholar
  18. Hanks, S.K., Quinn, A.M. and Hunter, T. 1988. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42–52.PubMedGoogle Scholar
  19. Hipskind, J.D., Nicholson, R.L. and Goldsbrough, P.B. 1996. Isolation of a cDNA encoding a novel leucine-rich repeat motif from Sorghum bicolorinoculated with fungi.Mol. Plant-Microbe Interact. 9: 819–825.Google Scholar
  20. Hunter, M.D. and Hull, L.A. 1993. Variation in concentrations of phlorizin and phloretin in apple foliage. Phytochemistry 5: 1251–1254.Google Scholar
  21. Jones, D.A. and Jones, J.D.G. 1997. The role of leucine-rich repeat proteins in plant defence. Adv. Bot. Res. 24: 89–166.Google Scholar
  22. Jones, D.A., Thomas, C.M., Hammond-Kosack, K.E., Balint-Kurti, P.J. and Jones, J.D.G. 1994. Isolation of the tomato Cf-9gene for resistance to Cladosporium fulvumby transposon tagging. Science 266: 789–793.PubMedGoogle Scholar
  23. Kajava, A.V. 1998. Structural diversity of leucine-rich repeat proteins. J. Mol. Biol. 277: 519–527.PubMedGoogle Scholar
  24. Kauss, H. and Jeblick, W. 1995. Pretreatment of parsley suspension cultures with salicylic acid enhances spontaneous and elicited production of H2O2. Plant Physiol. 108: 1171–1178.PubMedGoogle Scholar
  25. Kauss, H. and Jeblick, W. 1996. Influence of salicylic acid on the induction of competence for H2O2 elicitation: comparison of ergosterol with other elicitors. Plant Physiol. 111: 755–763.PubMedGoogle Scholar
  26. Kobe, B. and Deisenhofer, J. 1995. Proteins with leucine-rich repeats. Curr. Biol. 5: 409–416.Google Scholar
  27. Krüger, J. 1989. Scab resistance of apple cultivars, selections and progenies with the Vfgene. In: C. Gessler, D.J. Butt and B. Koller (Eds.), Integrated Control of Pome Fruit Disease, IOBC Bull. vol. II, pp. 161–167.Google Scholar
  28. Kyte, J. and Doolittle, R.F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105–132.PubMedGoogle Scholar
  29. Landschulz, W.H., Johnson, P.F. and McKnight, S.L. 1988. The leucine zipper: a hypotetical structure common to new DNA binding proteins. Science 240: 1759–1764.PubMedGoogle Scholar
  30. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M. and Hoffmann, J.A. 1996. The dorsoventral regulatory gene cassette spatzle/Toll/cactuscontrols the potent antifungal response in Drosophilaadults. Cell 86: 973–983.PubMedGoogle Scholar
  31. Li, J.M. and Chory, J. 1997. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90: 929–938.PubMedGoogle Scholar
  32. MacHardy, W.E. 1996. Apple Scab: Biology, Epidemiology, and Management. APS Press, St. Paul, MN.Google Scholar
  33. Mauch-Mani, B. and Slusarenko, A.J. 1996. Production of salicylic acid precursors is a major function of phenylalanine ammonialyase in the resistance of arabidopsis to Peronospora parasitica. Plant Cell. 8: 203–212.PubMedGoogle Scholar
  34. Mayr, U., Michalek, S., Treutter, D. and Feucht, W. 1997. Phenolic compounds of apple and their relationship to scab resistance. J. Phytopathol. 145: 69–75.Google Scholar
  35. Müller, M. and Gessler, C. 1993. A protein from apple leaves inhibits pectinolytic activity of Venturia inaequalis in vitro. In: B. Fritig and M. Legrand (Eds.), Mechanisms of Plant Defense Responses, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 68–71.Google Scholar
  36. Nicholson, R.L., Van Scoyoc, S., Williams, E.B. and Kuc, J. 1977. Host-pathogen interactions preceding the hypersensitive reaction of Malussp. to Venturia inaequalis. Phytopathology 67: 108–114.Google Scholar
  37. Nuss, L., Mahé, A., Clark, A.J., Grisvard, J., Dron, M., Cervone, F. and De Lorenzo, G. 1996. Differential accumulation of polygalacturonase-inhibiting protein (PGIP) mRNA in two near-isogenic lines of Phaseolus vulgarisL. upon infection with Colletotrichum lindemuthianum. Physiol. Mol. Plant Pathol. 48: 83–89.Google Scholar
  38. Parisi, L. 1997. Resistenza del melo alla ticchiolatura e variabilità del potere patogeno di Venturia inaequalis. Informatore Fitopatol. 6: 5–8.Google Scholar
  39. Parniske, M., Hammond-Kosack, K.E., Golstein, C., Thomas, C.M., Jones, D.A., Harrison, K., Wulff, B.B.H. and Jones, J.D.G. 1997. Novel disease resistance specificities result from sequence ex957 change between tandemly repeated genes at the Cf-4/9locus of tomato. Cell 91: 821–832.PubMedGoogle Scholar
  40. Pearson, W.R. 1990. Rapid and sensitive sequence comparison with FASTP and FASTA. Meth. Enzymol. 183: 63–98.PubMedGoogle Scholar
  41. Rosen, K.M. and Villakomaroff, L. 1989. An alternative method for the visualization of RNA in formaldehyde agarose gels. Focus 2: 23–24.Google Scholar
  42. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  43. Schmidt, E.D.L., Guzzo, F., Toonen, M.A.J. and de Vries, S.C. 1997. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124: 2046–2062.Google Scholar
  44. Shirasu, K., Nakajima, H., Rajasekhar, V.K., Dixon, R.A. and Lamb, C. 1997. Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9: 261–270.CrossRefPubMedGoogle Scholar
  45. Siegrist, J., Jeblick, W. and Kauss, H. 1994. Defense responses in infected and elicited cucumber (Cucumis sativusL.) hypocotyl segments exhibiting acquired resistance. Plant Physiol. 105: 1365–1374.PubMedGoogle Scholar
  46. Song, W.Y., Wang, G.L., Chen, L.L., Kim, H.S., Pi, L.Y., Holsten, T., Gardner, J., Wang, B., Zhai,W.X., Zhu, L.H. et al. 1995. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270: 1804–1806.PubMedGoogle Scholar
  47. Song, W.Y., Pi, L.Y., Wang, G.L., Gardner, J., Holsten, T. and Ronald, P.C. 1997. Evolution of the rice Xa21disease resistance gene family. Plant Cell 9: 1279–1287.PubMedGoogle Scholar
  48. Stiefel, V., Ruiz-Avila, L., Raz, R., Pilar Valles, M., Gomez, J., Pagè s, M., Martinez-Izquierdo, J.A., Ludevid, M.D., Langdale, J.A., Nelson, T. et al. 1990. Expression of a maize cell wall hydroxyproline-rich glycoprotein gene in early leaf and root vascular differentiation. Plant Cell 2: 785–793.CrossRefPubMedGoogle Scholar
  49. Torii, K.U., Mitsukawa, N., Oosumi, T., Matsuura, Y., Yokoyama, R., Whittier, R.F. and Komeda, Y. 1996. The arabidopsis ERECTAgene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell 8: 735–746.PubMedGoogle Scholar
  50. Tornero, P., Mayda, E., Gó mez, M.D., Cañ as, L., Conejero, V. and Vera, P. 1996. Characterization of LRP, a leucine-rich repeat (LRR) protein from tomato plants that is processed during pathogenesis. Plant J. 10: 315–330.PubMedGoogle Scholar
  51. Toubart, P., Desiderio, A., Salvi, G., Cervone, F., Daroda, L., De Lorenzo, G., Bergmann, C., Darvill, A.G. and Albersheim, P. 1992. Cloning and characterization of the gene encoding the endopolygalacturonase-inhibiting protein (PGIP) of Phaseolus vulgarisL. Plant J. 2: 367–373.PubMedGoogle Scholar
  52. von Heijne, G. 1986. A new method for predicting signal sequence cleavage sites. Nucl. Acids Res. 14: 4683–4690.PubMedGoogle Scholar
  53. Walker, J.C. 1993. Receptor-like protein kinase genes of Arabidopsis thaliana. Plant J. 3: 451–456.PubMedGoogle Scholar
  54. Weinsten, J.N., Blumenthal, R., van Renswoude, J., Kempf, C. and Klausner, R.D. 1982. Charge clusters and the orientation of membrane proteins. J. Membr. Biol. 66: 203–212.PubMedGoogle Scholar
  55. Whitham, S., Dinesh-Kumar, S.P., Choi, D., Hehl, R., Corr, C. and Baker, B. 1994. The product of the tobacco mosaic virus resistance gene N: Similarity to Toll and the interleukin-1 receptor. Cell 78: 1101–1115.PubMedGoogle Scholar
  56. Yoshimura, S., Yamanouchi, U., Katayose, Y., Toki, S., Wang, Z.X., Kono, I., Kurata, N., Yano, M., Iwata, N. and Sasaki, T. 1998. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc. Natl. Acad. Sci. USA 95: 1663.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • M. Komjanc
    • 1
  • S. Festi
    • 1
  • L. Rizzotti
    • 1
  • L. Cattivelli
    • 2
  • F. Cervone
    • 3
  • G. De Lorenzo
    • 3
  1. 1.Istituto Agrario di San Michele all' AdigeS. Michele all' Adige (TN)Italy
  2. 2.Istituto Sperimentale per la Cerealicoltura, Sez. Fiorenzuola d'Arda, via S.Protaso, Fiorenzuola d'Arda (PC), ItalyUniversità di Roma ‘La Sapienza’RomaItaly
  3. 3.Dipartimento di Biologia VegetaleUniversità di Roma ‘La Sapienza’RomaItaly

Personalised recommendations