Journal of Automated Reasoning

, Volume 23, Issue 3, pp 235–264 | Cite as

A Formal Proof of Sylow's Theorem

  • Florian Kammüller
  • Lawrence C. Paulson


The theorem of Sylow is proved in Isabelle HOL. We follow the proof by Wielandt that is more general than the original and uses a nontrivial combinatorial identity. The mathematical proof is explained in some detail, leading on to the mechanization of group theory and the necessary combinatorics in Isabelle. We present the mechanization of the proof in detail, giving reference to theorems contained in an appendix. Some weak points of the experiment with respect to a natural treatment of abstract algebraic reasoning give rise to a discussion of the use of module systems to represent abstract algebra in theorem provers. Drawing from that, we present tentative ideas for further research into a section concept for Isabelle.

Sylow's theorem Isabelle theorem proving 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Bruijn, N. G.: Telescoping mappings in typed lambda calculus, Inform. and Comput. 91 (1991), 189-204.Google Scholar
  2. 2.
    de Bruijn, N. G.: A survey of the project AUTOMATH, in J. P. Seldin and J. R. Hindley (eds.), To H. B. Curry: Essays on Combinatory Logic, Academic Press Limited, 1980, 579-606.Google Scholar
  3. 3.
    Dowek, G.: Naming and scoping in a mathematical vernacular, Technical Report 1283, INRIA, Rocquencourt, 1990.Google Scholar
  4. 4.
    Farmer, W. M., Guttman, J. D. and Thayer, F. J.: IMPS: An Interactive Mathematical Proof System, J. Automated Reasoning 11 (1993), 213-248.Google Scholar
  5. 5.
    Guttag, J. V. and Horning, J. J. (eds.): Larch: Languages and Tools for Formal Specification, Texts and Monographs in Comput. Sci., Springer-Verlag, 1993. With Stephen J. Garland, Kevin D. Jones, Andrés Modet, and Jeannette M. Wing.Google Scholar
  6. 6.
    Gunter, E. L.: Doing algebra in simple type theory, Technical Report MS-CIS-89-38, Dep. of Computer and Information Science, University of Pennsylvania, 1989.Google Scholar
  7. 7.
    Herstein, I. N.: Topics in Algebra, Xerox, 1964.Google Scholar
  8. 8.
    The HOL System, Tutorial. Available on the Web as Scholar
  9. 9.
    Kammüller, F. and Wenzel, M.: Locales - a sectioning concept for Isabelle, Technical Report 449, University of Cambridge, Computer Laboratory, 1998.Google Scholar
  10. 10.
    Owre, S., Shankar, N. and Rushby, J. M.: The PVS specification language (Beta Release), Technical report, SRI International, 1993.Google Scholar
  11. 11.
    Paulson, L. C.: Isabelle: The next 700 theorem provers, in P. Odifreddi (ed.), Logic and Computer Science, Academic Press, 1990, pp. 361-386.Google Scholar
  12. 12.
    Paulson, L. C.: Isabelle: A Generic Theorem Prover, LNCS 828, Springer, 1994.Google Scholar
  13. 13.
    Paulson, L. C.: First Isabelle user' workshop, Technical Report 379, Computer Laboratory, University of Cambridge, September 1995.Google Scholar
  14. 14.
    Paulson, L. C. and Grabczewski, K.: Mechanizing set theory, J. Automated Reasoning 17 (1996), 291-323.Google Scholar
  15. 15.
    Wielandt, H.: Ein Beweis für die Existenz der Sylowgruppen, Arch. Math. 10 (1959), 401-402.Google Scholar
  16. 16.
    Yu, Y.: Computer proofs in group theory, J. Automated Reasoning 6 (1990), 251-286.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Florian Kammüller
    • 1
  • Lawrence C. Paulson
    • 1
  1. 1.Computer LaboratoryUniversity of CambridgeUK

Personalised recommendations