Environmental Monitoring and Assessment

, Volume 63, Issue 2, pp 361–380 | Cite as

Harmonisation and Standardisation in Multi-National Environmental Statistics – Mission Impossible?

  • Michael Köhl
  • Berthold Traub
  • Risto Päivinen


Multi-national statistics are frequently based on data, whichoriginate from national surveys. The systems of nomenclatureapplied for key attributes often show national differences.Different error sources which are incorporated in multi-nationalstatistics are discussed. The paper presents approaches forharmonisation and standardisation of multi-nationalenvironmental statistics and gives examples from the forestrysector. The effect of differences of national forest areaestimates on multi-national figures is quantified. An examplefrom forest health surveys is presented that shows the impact ofdifferent interpretation and application of the attribute “crown transparency” that is already harmonised on theEuropean level.

bias crown transparency EFICS forest area harmonisation multi-national statistics standardisation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arvanitis, L. G. and O'Regan,W. G.: 1967, Computer Simulation and Economic Efficiency in Forest Sampling, Hilgardia 38 (2).Google Scholar
  2. Bailar, B, Bailey, L. and Stevens, J.: 1977, Measures of interviewer bias and variance. Journal of Marketing Research 14, 337.Google Scholar
  3. Chrisman, N. R.: 1987: The accuracy of map overlays: A reassessment, Landscape and Urban Planning 14, 427.Google Scholar
  4. Cochran, W.: 1977, Sampling Techniques, John Wiley & Sons, New York, NY, 428 p.Google Scholar
  5. Cunia, T.: 1965, Some Theory on Reliability of Volume Estimates in a Forest Inventory Sample, Forest Science 11(1).Google Scholar
  6. EAFV: 1988, Schweizerisches Landesforstinventar: Ergebnisse der Erstaufnahme 1982-1986, Eidg. Anst. Forstl. Versuchswes., Ber. 305, 375 S.Google Scholar
  7. Effron, B.: 1979, Bootstrap methods: Another look at the jackknife, Ann. Stat. 7, 1.Google Scholar
  8. Effron, B.: 1982, The jackknife, the bootstrap and other resampling plans, CBMS-NSF Reg. Conf. Ser. Appl. Math.Google Scholar
  9. European Commission (EC): 1997, Study on European Forestry Information and Communication System: Report on Forest Inventory and Survey Systems, Luxembourg.Google Scholar
  10. FAO: 1960, World Forest Inventory, Rome, Italy.Google Scholar
  11. FAO: 1995, Forest Resources Assessment 1990-Global Synthesis. FAO Forestry Paper 124. Rome, Italy.Google Scholar
  12. FFRI: 1996, Expert Consultation on Global Forest Resources Assessment 2000 (Kotka III), Finnish Forest Research Institute, Research Report No. 620, Helsinki, 369 p.Google Scholar
  13. FGDC: 1995, FGDC Vegetation Classification Standards. Federal Geographic Data Committe. Reston, VA, U.S.A. (unpublished manuscript).Google Scholar
  14. Fuller, W. A.: 1987, Measurement Error Models, John Wiley & Sons, New York, 440 p.Google Scholar
  15. Gertner, G. Z. and Köhl, M.: 1992, An Assessment of Some Nonsampling Errors in a National Survey Using an Error Budget, Forest Science 38(3), 525.Google Scholar
  16. Gertner, G. Z. and Köhl, M.: 1995, Correlated Observer Errors and their Effects on Survey Estimates of Needle-Leaf Loss, Forest Science 41(4), 758.Google Scholar
  17. Gregoire, T. G.: 1984, The jackknife: an introduction with applications in forestry data analysis, Can. J. For. Res. 14, 493.Google Scholar
  18. Groves, R.: 1989, Survey Errors and Survey Costs, John Wiley & Sons, New York, NY, 590 p.Google Scholar
  19. Hansen, M., Hurwitz, W. and Bershad, M.: 1961, Measurement errors in censuses and surveys. Bulletin of the International Statistical Institute 38, 359.Google Scholar
  20. Ilvessalo, Y.: 1923, Tutkimuksia yksityismetsien tilasta Hämeen läänin keskiosissa. Referat: Untersuchungen ueber den Zustand der Privatwälder in der mittleren Teilen des Läns Tavastehus. Acta For. Fenn. 26, 1.Google Scholar
  21. ISCI: 1996, Background Document. Intergovernmental Seminar on Criteria and Indicators For Sustainable forest Management. August 19-22, 1996, Helsinki, Finland. Ministry of Agriculture and Forestry. 131 p.Google Scholar
  22. Kapos, V. and Iremonger, S. F.: 1997, ‘Archieving Global and Regional Perspectives on Forest Biodivesity and Conservation’, in Bachmann, P., Köhl, M. and Päivinen, R. (eds.), Assessment of Forest Biodiversity for Improved Forest Planning, Kluwer Academic Publishers, Dordrecht, pp. 3-14.Google Scholar
  23. Kaufmann, E.: 1993, ‘Tree Volume Estimations and Sample Tree Selection in the Swiss NFI’, in Nyyssönen, A., Poso, S. and Rautala, J. (eds.), Proceedings of Ilvessalo Symposium of National Forest Inventories, Finnish Forest Research Institute, Helsinki, Research Paper 444, pp. 185-194.Google Scholar
  24. Kilkki, P.: 1983, Sample trees in timber volume estimation. Acta Forestalia Fennica 182, 35 p.Google Scholar
  25. Kish, L.: 1965, Survey Sampling, J. Wiley & Sons, New York, 643 p.Google Scholar
  26. Köhl, M.: 1993, Quantifizierung der Beobachterfehler bei der Nadel-/Blattverlustschätzung, Allgemeine Forst-und Jagdzeitung 164(5), 83.Google Scholar
  27. Köhl, M., Scott, C. T. and Zingg, A.: 1995, Evaluation of Permanent Sample Surveys for Growth and Yield Studies, Forest Ecology and Management 71(3), 187.Google Scholar
  28. Köhl, M., Päivinen, R., Traub, B. and Miina, S.: 1997, ‘Comparative Study’, in Study on European Forestry Information and Communication System: Report on Forest Inventory and Survey Systems, European Commission, Luxembourg: pp. 1267-1322.Google Scholar
  29. Lessler, J. and Kalsbeek, W.: 1992, Nonsampling Error in Surveys, John Wiley & Sons, New York, NY., 412 p.Google Scholar
  30. Päivinen, R.: 1987, Metsän inventoinnin suunnitelumalli. A Planning Model for Forest Inventory. University of Joensuu, Publications in Science 11, 179 p.Google Scholar
  31. Päivinen, R. E.: 1980, Puiden läimittajakauman estimointi ja siihen perustuva puustotunnusten laskenta. Dummary: On the estimation of the stem-diameter distribution and stand characteristics. Folia For. 442, 28 p.Google Scholar
  32. Schmid-Haas, P.: 1980, Wie kann die Effizienz der Waldinventur verbessert werden?, Eidgen. Anst. Forstl. Versuchswes., Bericht Nr. 211, BirmendsdorfGoogle Scholar
  33. Schreuder, H. T., Li, H. G. and Scott, C. T.: 1987, Jackknifing and Bootstrap estimation for sampling with partial replacement, For. Sci. 33(3), 676.Google Scholar
  34. Schreuder, H. T., Gregoire, T. G. and Wood, G. B.: 1993, Sampling Methods for Multiresource Forest Inventory, John Wiley & Sons, 446 p.Google Scholar
  35. Scott, C. T. and Köhl, M.: 1993, A Method for Comparing Sampling Design Alternatives for Extensive Inventories, Mitteilungen der Eidgenössischen Forschungsanstalt für Wald, Schnee und Landschaft, Birmensdorf, Band 68, Heft 1, 62 p.Google Scholar
  36. Tomppo, E., Varjo, J., Korhonen, K., Aholam, A., Ihalainen, A., Heikkinen, J., Hirvelä, H., Mikkola, E., Salminen, S. and Tuomainen, T., 1997: ‘Country Report for Finland’, in European Commission, 1997: Study on European Forestry Information and Communication System: Report on Forest Inventory and Survey Systems, Luxembourg.Google Scholar
  37. Traub, B., Köhl, M. and Päivinen, R.: 1997, 'simulation Study’, in European Commission: Study on European Forestry Information and Communication System: Report on Forest Inventory and Survey Systems, Luxembourg.Google Scholar
  38. UNEP: 1995, Global Biodiversity Assessment, Cambridge University Press.Google Scholar
  39. UNESCO: 1973, International Classification and Mapping of Vegetation. United Nations Educational, Scientific and Cultural Organisation, Paris, France, 93 p.Google Scholar
  40. Wensel, L. and Biging, G. (eds.): 1990, Forest Simulation Systems, University of California, Division of Agriculture and Natural Sciences, Bulletin 1927, Berkeley, 420 p.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Michael Köhl
    • 1
  • Berthold Traub
    • 2
  • Risto Päivinen
    • 3
  1. 1.Chair of Forest Biometrics and Computer SciencesDresden University of TechnologyTharandtGermany
  2. 2.Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfSwitzerland
  3. 3.European Forest InstituteJoensuuFinland

Personalised recommendations