Earth, Moon, and Planets

, Volume 77, Issue 3, pp 223–230 | Cite as

Modelling Gas And Dust Release From Comet Hale–Bopp

  • D. Prialnik
Article

Abstract

Numerical simulations of the evolving activity of comet Hale-Bopp are presented, assuming a porous, spherical nucleus, 20 km in radius, made of dust and gas-laden amorphous ice. The main effects included are: crystallization of amorphous ice and release of occluded gas, condensation, sublimation and flow of gases through the pores, changing pore sizes, and flow of dust grains. The model parameters, such as initial pore size and porosity, emissivity, dust grain size, are varied in order to match the observed activity. In all cases, a sharp rise in the activity of the nucleus occurs at a large heliocentric distance pre-perihelion, marked by a few orders of magnitude increase in the CO and the CO2 fluxes and in the rate of dust emission. This is due to the onset of crystallization, advancing down to a few meters below the surface, accompanied by release of the trapped gases. A period of sustained, but variable, activity ensues. The emission of water molecules is found to surpass that of CO at a heliocentric distance of 3 AU. Thereafter the activity is largely determined by the behaviour of the dust. If a dust mantle is allowed to build up, the water production rate does not increase dramatically towards perihelion; if most of the dust is ejected, the surface activity increases rapidly, producing a very bright comet.

Comets: general  comets: individual (Hale–Bopp 1995 O1)} 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bar-Nun, A., Dror, J., Kochavi, E., and Laufer, D.: 1987, Phys. Rev. 35, 2427.CrossRefADSGoogle Scholar
  2. Biver, N., Bockelée-Morvan, D., Colom, P., Crovisier, J., Davies, J. K., Dent, W. R. F., Despois, D., Gérard, E., Lellouch, E., Rauer, H., Moreno, R., and Paubert, G.: 1997, Science 275, 1915.CrossRefADSGoogle Scholar
  3. Biver, N. et al.: 1997–1999, Earth, Moon, and Planets 78, in press.Google Scholar
  4. Crovisier, J., Leech, K., Bockelée-Morvan, D., Brooke, T. Y., Hanner, M. S., Altieri, B., Keller, H.-U., and Lellouch, E.: 1997, Science 275, 1904.CrossRefADSGoogle Scholar
  5. Huebner, W. F. and Benkhoff, J.: 1997–1999, Earth, Moon, and Plantes 77, 217–222.CrossRefADSGoogle Scholar
  6. Jewitt, D., Senay, M., and Matthews, H.: 1996, Science 271, 1110.ADSGoogle Scholar
  7. Kidger, M. R., Serra-Ricart, M., Bellot-Rubio, L. R., and Casas, R.: 1996, ApJ 461, L119.CrossRefADSGoogle Scholar
  8. Marsden, B. G.: 1997–1999, Earth, Moon, and Planets 79, in press.Google Scholar
  9. Mekler, Y. and Podolak, M.: 1994, Planet. Space Sci. 42, 865.CrossRefADSGoogle Scholar
  10. Mekler, Y., Prialnik, D., and Podolak, M.: 1990, ApJ 356, 682.CrossRefADSGoogle Scholar
  11. Podolak, M. and Prialnik, D.: 1996, Planet. Space Sci. 44, 655.CrossRefADSGoogle Scholar
  12. Prialnik, D.: 1992, ApJ 388, 196.CrossRefADSGoogle Scholar
  13. Prialnik, D.: 1997, ApJ 478, L107.CrossRefADSGoogle Scholar
  14. Prialnik, D. and Bar-Nun, A.: 1990, ApJ 363, 274.CrossRefADSGoogle Scholar
  15. Prialnik, D., Brosch, N., and Ianovici, D.: 1995, MNRAS 276, 1148.ADSGoogle Scholar
  16. Prialnik, D., Egozi, U., Bar-Nun, A., Podolak, M., and Greenzweig, Y.: 1993, Icarus 106, 499.CrossRefADSGoogle Scholar
  17. Rauer, H., Arpigny, C., Boehnhardt, H., Colas, F., Crovisier, J., Jorda, L., Küppers, M., Manfroid, J., Rembor, K., and Thomas, N.: 1997, Science 275, 1909.CrossRefADSGoogle Scholar
  18. Weaver, H. A., Feldman, P. D., A'Hearn, M. F., Arpigny, C., Brandt, J. C., Festou, M. C., Haken, M., McPhate, J. B., Stern, S. A., and Tozzi, G. P.: 1997, Science 275, 1900.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • D. Prialnik
    • 1
  1. 1.Department of Geophysics and Planetary SciencesTel Aviv UniversityRamat AvivIsrael

Personalised recommendations