Plant Molecular Biology

, Volume 40, Issue 2, pp 355–363

Expression and cellular localization of Atrab28 during Arabidopsis embryogenesis

  • César Arenas-Mena
  • Monique Raynal
  • Antonio Borrell
  • Fabrice Varoquaux
  • Mari Cruz Cutanda
  • Robin A.P. Stacy
  • Montserrat Pagès
  • Michel Delseny
  • Francisco A. Culiáñez-Macià
Article

Abstract

The maize abscisic acid (ABA)-responsive gene rab28 has been shown to be ABA-inducible in embryos and vegetative tissues, expression being mostly restricted to vascular elements during late embryogenesis. In the course of an expressed sequence tags (ESTs) programme, we have isolated an Arabidopsis thaliana gene, Atrab28, encoding the orthologue of maize rab28. The Atrab28 cDNA is 1090 bp long, including a poly(A)+ stretch, and encodes a polypeptide of 262 amino acids. Atrab28 antibody against the recombinant protein recognizes a polipeptide of about 30 kDa and pI 6, in close agreement with the predicted molecular mass and pI. As for maize rab28, expression studies with Atrab28 revealed high specificity for embryo tissues, transcription being stimulated by the transcriptional activator abi3. In contrast, Atrab28 was not induced in vegetative tissues by ABA, osmotic stress or dehydration. The expression of Atrab28 mRNA and the accumulation of Atrab28 protein was largely restricted to provascular tissues of mature embryos and in the seed coat outer tegument and embryo and silique epidermis, as revealed by in situ hybridization and immunocytochemistry with anti-Atrab28 antibodies.

Arabidopsis thaliana embryo-specific gene expression Lea proteins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, J.C., Steele, C. and Dure III, L. 1988. Sequence and characterisation of 6 Lea proteins and their genes from cotton. Plant Mol. Biol. 11: 277–291.Google Scholar
  2. Borer, R.A., Lehner, C.F., Eppenberger, H.M. and Nigg, E.A. 1989. Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 56: 379–390.Google Scholar
  3. Busk, P.K. and Pagès, M. 1998. Protein-binding to the abscisic acidresponsive element is independent of viviparous1 in vivo. Plant Cell 9: 2261–2270.Google Scholar
  4. Close, T.J., Kortt, A.A. and Chandler, P.M. 1989. A cDNAbased comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Mol. Biol. 13: 95–108.Google Scholar
  5. Cooke, R., Raynal, M., Laudie, M., Grellet, F., Delseny, M., Morris, P.C., Guerrier, D., Giraudat, J., Quigley, F., Clabault, G., Li, Y.F., Mache, R., Krivitzky, M., Jean-Jacques Gy, I., Kreis, M., Lecharny, A., Parmentier, Y., Marbach, J., Fleck, J., Clément, B., Philipps, G., Hervé, C., Bardet, C., Tremousaygue, D., Lescure, B., Lacomme, C., Roby, D., Jourjon, M.F., Chabrier, P., Charpenteau, J.L., Desprez, T., Amselem, J., Chiapello, H. and Hofte, H. 1996. Further progress towards a catalogue of all Arabidopsis genes: analysis of a set of 5000 non-redundant ESTs. Plant J. 9: 101–124.Google Scholar
  6. Creusot, F., Fouilloux, E., Dron, M., Lafleuriel, J., Picard, G., Billault, A., Le Paslier, D., Cohen, D., Chabouté, M.E. and Durr, A. 1995. The CIC library: a large insert YAC library for genome mapping in Arabidopsis thaliana. Plant J. 8: 763–770.Google Scholar
  7. Delseny, M., Gaubier, P., Hull G., Saez-Vasquez, J., Gallois, P., Raynal, M., Cooke, R. and Grellet, F. 1994. Nuclear genes expressed during seed desiccation; relationship with responses to stress. In: A.S. Basra (Ed.), Stress-Induced Gene Expression in Plants, Harwood, Reading, UK, pp. 25–59.Google Scholar
  8. Delseny, M., Cooke, R., Raynal, M. and Grellet, F. 1997. The Arabidopsis thaliana cDNA sequencing projects. FEBS Lett. 403: 221–224.Google Scholar
  9. Dure III, L. 1985. Embryogenesis and gene expression during seed formation. Oxford Surv. Plant. Mol. Cell. Biol. 2: 179–197.Google Scholar
  10. Dure III, L. 1993. A repeating 11-mer amino acid motif and plant desiccation. Plant J. 3: 363–369.Google Scholar
  11. Dure III, L., Crouch, M., Harada, J., Ho, T.H.D., Mundy, J., Quatrano, R.S., Thomas, T. and Sung, R.Z. 1989. Common amino acid sequence domains among the LEA proteins in higher plants. Plant Mol. Biol. 12: 475–486.Google Scholar
  12. Feng, D.F., Johnson, M.S. and Dolittle, R.F. 1987. Aligning amino acids sequences: Comparison of commonly used methods. J. Mol. Evol. 21: 112–125.Google Scholar
  13. Galau, G.A., Hughes, D.W. and Dure III, L. 1986. Abscisic acid induction of cloned cotton late-embryogenesis-abundant (Lea) mRNAs. Plant Mol. Biol. 7: 155–170.Google Scholar
  14. Gaubier, P., Raynal, M., Hull, G., Huestis, G.M., Grellet, F., Arenas, C., Pagès, M. and Delseny, M. 1986. Two different Emlike genes are expressed in Arabidopsis thaliana seeds during maturation. Mol. Gen. Genet. 238: 409–418.Google Scholar
  15. Garcia-Bustos, J., Heitman, J. and Hall, M.N. 1991. Nuclear protein localization. Biochim. Biophys. Acta 1071: 83–101.Google Scholar
  16. Girard, J.P., Lehtonen, H., Caizergues-Ferrer, M., Amalric, F., Tollervey, D. and Lapeyre, B. 1992. GAR1 is an essential small nucleolar RNP protein required for pre-rRNA processing in yeast. EMBO J. 11: 673–682.Google Scholar
  17. Giraudat, J., Hauge, B.M., Valon, C., Smalle, J., Parcy, F. and Goodman, H.M. 1992. Isolation of the Arabidopsis abi3 gene by positional cloning. Plant Cell 4: 1251–1261.Google Scholar
  18. Giraudat, J., Parcy, F., Bertauche, N., Gosti, F., Leung, J., Morris, P.C., Bouvier-Durand, M. and Vartanian, N. 1994. Current advances in abscisic acid action and signaling. Plant Mol. Biol. 26: 1557–1577.Google Scholar
  19. Goday, A., Sánchez-Martínez, D., Gómez, J. Puigdoménech, P. and Pagès, M. 1988. Gene expression in developing Zea mays embryos: Regulation by abscisic acid of a highly phosphorylated 23–25 kDa group of proteins. Plant Physiol. 88: 564–569.Google Scholar
  20. Goday, A., Jensen, A., Culiáñez-Macià, F.A., Alba, M.M., Figueras, M., Serratosa, J., Torrent, M. and Pagès, M. 1994. The maize abscisic acid responsive protein Rab17 is located in the nucleus and cytoplasm and interacts with nuclear localisation signals. Plant Cell 6: 351–360.Google Scholar
  21. Gómez, J., Sánchez-Martínez, D., Stiefel, V., Rigau, J., Puigdoménech, P. and Pagès, M. 1988. A gene induced by the plant hormone abscisic in response to water stress encodes a glycine-rich protein. Nature 334: 262–264.Google Scholar
  22. Grellet, F., Delcasso-Tremoussaygue, D. and Delseny, M. 1989. Isolation and characterization of an unusual repeated sequence from the ribosomal intergenic spacer of the crucifer Sisymbrium irio. Plant Mol. Biol. 12: 695–706.Google Scholar
  23. Jensen, A.B., Goday, A., Figueras, M., Jessop, M. and Pagès, M. 1998. Phosphorylation mediates the nuclear targeting of the maize rab17 protein. Plant J. 13: 691–697.Google Scholar
  24. Kiyosue, T., Yamaguchi-Shinozaki, K., Shinozaki, K., Higashi, K., Satoh, S., Kamada, H. and Harada, H. 1992. Isolation and characterization of a cDNA that encodes ECP 31, an embryogenic cell protein from carrot. Plant Mol. Biol. 19: 239–249.Google Scholar
  25. Koornneef, M. 1994. Arabidopsis genetics. In: E.M. Meyerowitz and C.R. Somerville (Eds.), Arabidopsis, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 89–120.Google Scholar
  26. Koornneef, M., Jorna, M.L., Brinkhorst van der Swan, D.L.C. and Karssen, C.M. 1982. The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in nongerminating gibberellin sensitive lines of Arabidopsis thaliana (L.) Heynh. Theor Appl Genet 61: 385–393.Google Scholar
  27. Koornneef, M., Reuling, G. and Karssen, C.M. 1984. The isolation and characterisation of abscisic-insensitive mutants of Arabidopsis thaliana. Physiol. Plant. 61: 377–383.Google Scholar
  28. Lang, V. and Palva, T. 1992. The expression of a rab related gene rab18 is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh. Plant Mol. Biol. 20: 951–962.Google Scholar
  29. Lister, C. and Dean, C. 1993. Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana. Plant J. 4: 745–750.Google Scholar
  30. McCarty, D.R. 1995. Genetic control and integration of maturation and germination pathway in seed development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 71–93.Google Scholar
  31. Mundy, J. and Chua, N.H. 1988. Abscisic acid and water stress induce the expression of a novel rice gene. EMBO J. 7: 2279–2286.Google Scholar
  32. Nelson, T. and Langdale, J.A. 1992. Developmental genetics of C4 photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 25–47.Google Scholar
  33. Niogret, M.F., Culiáñez-Macià, F.A., Goday, A., Albà, M.M. and Pagès, M. 1996. Expression and cellular localisation of rab28 mRNA and Rab28 protein during maize embryogenesis. Plant J. 9: 549–557.Google Scholar
  34. Parcy, F., Valon, C., Raynal, M., Gaubier-Comella, P., Delseny, M. and Giraudat, J. 1994. Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6: 1567–1582.Google Scholar
  35. Pearce, G., Strydom, D., Johnson, S. and Ryan, C.A. 1991. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253: 895–899.Google Scholar
  36. Pla, M., Goday, A., Vilardell, J., Gómez, J. and Pagès, M. 1989. Differential regulation of ABA-induced 23–25 kDa proteins in embryo and vegetative tissues of the viviparous mutants of maize. Plant Mol. Biol. 13: 385–394.Google Scholar
  37. Pla, M., Gómez, J., Goday, A. and Pagès, M. 1991. Regulation of the abscisic acid responsive gene rab28 in maize viviparous mutants. Mol. Gen. Genet. 230: 394–400.Google Scholar
  38. Pla, M., Vilardell, J., Guiltinan, M., Marcotte, B., Niogret, M.F., Quatrano, R.S. and Pagès, M. 1993. The cis regulatory element CCACGTGG is involved in ABA and water stress responses in the maize gene rab 28. Plant Mol. Biol. 21: 259–266.Google Scholar
  39. Quatrano, R.S. 1986. Regulation of gene expression by abscisic acid during angiosperm embryo development. Oxford Surv. Plant Mol. Cell. Biol. 3: 467–477.Google Scholar
  40. Raynal, M., Depigny, D., Cooke, R. and Delseny, M. 1989. Characterization of a radish nuclear gene expressed during seed maturation. Plant Physiol. 91: 829–836.Google Scholar
  41. Sánchez-Martínez, D., Puigdoménech, P. and Pagès, M. 1986. Regulation of gene expression in developing Zea mays embryos. Protein synthesis during embryogenesis and early germination of maize. Plant Physiol. 82: 543–549.Google Scholar
  42. Sanger, F., Nicklen, S. and Coulson, A.R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.Google Scholar
  43. Vilardell, J., Martínez-Zapater, J.M., Goday, A., Arenas, C. and Pagès, M. 1994. Regulation of the rab17 gene promoter in transgenic Arabidopsis wild-type, ABA-deficient and ABA insensitive mutants. Plant Mol. Biol. 24: 561–569.Google Scholar
  44. Welin, B.V., Olson, A. and Palva, E.T. 1995. Structure and organization of two closely related low-temperature-induced dhn/lea/rablike genes in Arabidopsis thaliana L. Heynh. Plant Mol. Biol. 29: 391–395.Google Scholar
  45. Yang, H., Saitou, T., Komeda, Y., Harada, H. and Kamada, H. 1996. Late embryogenesis abundant protein in Arabidopsis thaliana homologous to carrot ECP31. Physiol. Plant. 98: 661–666.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • César Arenas-Mena
    • 1
  • Monique Raynal
    • 2
  • Antonio Borrell
    • 2
  • Fabrice Varoquaux
    • 2
  • Mari Cruz Cutanda
    • 3
  • Robin A.P. Stacy
    • 3
  • Montserrat Pagès
    • 1
  • Michel Delseny
    • 2
  • Francisco A. Culiáñez-Macià
    • 3
  1. 1.Departament de Genètica MolecularCentre d'Investigació i Desenvolupament, C.S.I.C.BarcelonaSpain
  2. 2.Laboratoire de Physiologie et Biologie Moléculaire des Plantes, UMR 5545 CNRSUniversité de PerpignanPerpignanFrance
  3. 3.Instituto de Biología Molecular y Celular de PlantasUniversidad Politécnica de Valencia-C.S.I.C.ValenciaSpain

Personalised recommendations