Acta Applicandae Mathematica

, Volume 55, Issue 2, pp 127–208

Moving Coframes: II. Regularization and Theoretical Foundations

  • Mark Fels
  • Peter J. Olver
Article

Abstract

The primary goal of this paper is to provide a rigorous theoretical justification of Cartan’s method of moving frames for arbitrary finite-dimensional Lie group actions on manifolds. The general theorems are based a new regularized version of the moving frame algorithm, which is of both theoretical and practical use. Applications include a new approach to the construction and classification of differential invariants and invariant differential operators on jet bundles, as well as equivalence, symmetry, and rigidity theorems for submanifolds under general transformation groups. The method also leads to complete classifications of generating systems of differential invariants, explicit commutation formulae for the associated invariant differential operators, and a general classification theorem for syzygies of the higher order differentiated differential invariants. A variety of illustrative examples demonstrate how the method can be directly applied to practical problems arising in geometry, invariant theory, and differential equations.

moving frame Lie group jet bundle prolongation differential invariant equivalence symmetry rigidity syzygy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, I. M.: Introduction to the variational bicomplex, Contemp. Math. 132 (1992), 51-73.Google Scholar
  2. 2.
    Anderson, I. M. and Torre, C. G.: Two component spinors and natural coordinates for the prolonged Einstein equation manifolds, Preprint, Utah State University, 1997.Google Scholar
  3. 3.
    Atiyah, M. F. and Bott, R.: The moment map and equivariant cohomology, Topology 23 (1984), 1-28.Google Scholar
  4. 4.
    Bryant, R. L., Chern, S.-S., Gardner, R. B., Goldschmidt, H. L. and Griffiths, P. A.: Exterior Differential Systems, Math. Sci. Res. Inst. Publ., Vol. 18, Springer-Verlag, New York, 1991.Google Scholar
  5. 5.
    Cartan, É.: La méthode du repère mobile, la théorie des groupes continus, et les espaces généralisés, Exposés de Géométrie No. 5, Hermann, Paris, 1935.Google Scholar
  6. 6.
    Cartan, É.: Leçons sur la théorie des espaces à connexion projective, Cahiers Scientifiques, Vol. 17, Gauthier-Villars, Paris, 1937.Google Scholar
  7. 7.
    Cartan, É.: La théorie des groupes finis et continus et la géométrie différentielle traitées par la méthode du repère mobile, Cahiers Scientifiques, Vol. 18, Gauthier-Villars, Paris, 1937.Google Scholar
  8. 8.
    Cartan, É.: Les problèmes d'équivalence, in: Oeuvres complètes, Part. II, Vol. 2, Gauthier-Villars, Paris, 1953, pp. 1311-1334.Google Scholar
  9. 9.
    Fels, M. and Olver, P. J.: Moving coframes. I. A practical algorithm, Acta Appl. Math. 51 (1998), 161-213.Google Scholar
  10. 10.
    Gardner, R. B.: The Method of Equivalence and Its Applications, SIAM, Philadelphia, 1989.Google Scholar
  11. 11.
    Green, M. L.: The moving frame, differential invariants and rigidity theorems for curves in homogeneous spaces, Duke Math. J. 45 (1978), 735-779.Google Scholar
  12. 12.
    Griffiths, P. A.: On Cartan's method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry, Duke Math. J. 41 (1974), 775-814.Google Scholar
  13. 13.
    Husemoller, D.: Fiber Bundles, McGraw-Hill, New York, 1966.Google Scholar
  14. 14.
    Jensen, G. R.: Higher Order Contact of Submanifolds of Homogeneous Spaces, Lecture Notes in Math. 610, Springer-Verlag, New York, 1977.Google Scholar
  15. 15.
    Lisle, I.: Equivalence transformations for classes of differential equations, PhD Thesis, University of British Columbia, Vancouver, 1992.Google Scholar
  16. 16.
    Olver, P. J.: Symmetry groups and group invariant solutions of partial differential equations, J. Differential Geom. 14 (1979), 497-542.Google Scholar
  17. 17.
    Olver, P. J.: Applications of Lie Groups to Differential Equations, 2nd edn, Graduate Texts in Math. 107, Springer-Verlag, New York, 1993.Google Scholar
  18. 18.
    Olver, P. J.: Equivalence, Invariants, and Symmetry, Cambridge Univ. Press, Cambridge, 1995.Google Scholar
  19. 19.
    Olver, P. J.: Non-associative local Lie groups, J. Lie Theory 6 (1996), 23-51.Google Scholar
  20. 20.
    Olver, P. J.: Singularities of prolonged group actions on jet bundles, Preprint, University of Minnesota, 1998.Google Scholar
  21. 21.
    Ondich, J.: A differential constraints approach to partial invariance, Europ. J. Appl. Math. 6 (1995), 631-638.Google Scholar
  22. 22.
    Ovsiannikov, L. V.: Group Analysis of Differential Equations, Academic Press, New York, 1982.Google Scholar
  23. 23.
    Sternberg, S.: Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, NJ, 1964.Google Scholar
  24. 24.
    Thomas, T. Y.: The Differential Invariants of Generalized Spaces, Chelsea Publ. Co., New York, 1991.Google Scholar
  25. 25.
    Tresse, A.: Sur les invariants différentiels des groupes continus de transformations, Acta Math. 18 (1894), 1-88.Google Scholar
  26. 26.
    Tsujishita, T.: On variational bicomplexes associated to differential equations, Osaka J. Math. 19 (1982), 311-363.Google Scholar
  27. 27.
    Weyl, H.: Cartan on groups and differential geometry, Bull. Amer. Math. Soc. 44 (1938), 598-601.Google Scholar
  28. 28.
    Weyl, H.: Classical Groups, Princeton Univ. Press, Princeton, NJ, 1946.Google Scholar
  29. 29.
    Zharinov, V. V.: Geometrical Aspects of Partial Differential Equations, World Scientific, Singapore, 1992.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Mark Fels
    • 1
  • Peter J. Olver
    • 1
  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisU.S.A. e-mail

Personalised recommendations