, Volume 46, Issue 1–3, pp 203–231 | Cite as

Do top-down and bottom-up controls interact to exclude nitrogen-fixing cyanobacteria from the plankton of estuaries? An exploration with a simulation model

  • Robert W. Howarth
  • Francis Chan
  • Roxanne Marino


Explaining the nearly ubiquitous absence of nitrogen fixation by planktonic organisms in strongly nitrogen-limited estuaries presents a major challenge to aquatic ecologists. In freshwater lakes of moderate productivity, nitrogen limitation is seldom maintained for long since heterocystic, nitrogen-fixing cyanobacteria bloom, fix nitrogen, and alleviate the nitrogen limitation. In marked contrast to lakes, this behavior occurs in only a few estuaries worldwide. Primary production is limited by nitrogen in most temperate estuaries, yet no measurable planktonic nitrogen fixation occurs. In this paper, we present the hypothesis that the absence of planktonic nitrogen fixers from most estuaries is due to an interaction of bottom-up and top-down controls. The availability of Mo, a trace metal required for nitrogen fixation, is lower in estuaries than in freshwater lakes. This is not an absolute physiological constraint against the occurrence of nitrogen-fixing organisms, but the lower Mo availability may slow the growth rate of these organisms. The slower growth rate makes nitrogen-fixing cyanobacteria in estuaries more sensitive to mortality from grazing by zooplankton and benthic organisms.

We use a simple, mechanistically based simulation model to explore this hypothesis. The model correctly predicts the timing of the formation of heterocystic, cyanobacterial blooms in freshwater lakes and the magnitude of the rate of nitrogen fixation. The model also correctly predicts that high zooplankton biomasses in freshwaters can partially suppress blooms of nitrogen-fixing cyanobacteria, even in strongly nitrogen-limited lakes. Further, the model indicates that a relatively small and environmentally realistic decrease in Mo availability, such as that which may occur in seawater compared to freshwaters due to sulfate inhibition of Mo assimilation, can suppress blooms of heterocystic cyanobacteria and prevent planktonic nitrogen fixation. For example, the model predicts that at a zooplankton biomass of 0.2 mg l−1, cyanobacteria will bloom and fix nitrogen in lakes but not in estuaries of full-strength seawater salinity because of the lower Mo availability. Thus, the model provides strong support for our hypothesis that bottom-up and top-down controls may interact to cause the absence of planktonic nitrogen fixation in most estuaries. The model also provides a basis for further exploration of this hypothesis in individual estuarine systems and correctly predicts that planktonic nitrogen fixation can occur in low salinity estuaries, such as the Baltic Sea, where Mo availability is greater than in higher salinity estuaries.

Baltic Sea cyanobacteria estuaries grazing iron lakes molybdenum nitrogen nitrogen fixation nitrogen limitation zooplankton 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bergman B, Gallon JR, Rai AN & Stal LJ (1997) N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol. Rev. 19: 139-185Google Scholar
  2. Bothe H (1982) Nitrogen fixation. In: Carr NG & Whitton BA (Eds) The Biology of Cyanobacteria (pp 87-104). University of California Press, Berkeley, U.S.A.Google Scholar
  3. Brand LE (1991) Minimum iron requirements of marine phytoplankton and the implications for the biogeochemical control of new production. Limnol. Oceanogr. 36: 1756-1771Google Scholar
  4. Burns CW & Xu Z (1990) Calanoid copepods feeding on algae and filamentous cyanobacteria: Rates of ingestion, defecation and effects on trichome length. J. Plank. Res. 12: 201-213Google Scholar
  5. Burns CW & Hegarty B (1994) Diet selection by copepods in the presence of cyanobacteria. J. Plank Res. 16: 1671-690Google Scholar
  6. Canfield TJ & Jones JR (1996) Zooplankton abundance, biomass, and size-distribution in selected midwestern waterbodies and relation with trophic state. J. Fresh. Ecol. 11: 171-181Google Scholar
  7. Cardin CJ & Mason J (1976) Molybdate and tungstate transfer by rat ileum: competitive inhibition by sulphate. Biochim. Biophys. Acta 455: 937-946Google Scholar
  8. Carpenter EJ & Capone DG (1992) Nitrogen fixation in Trichodesmium blooms. In: Carpenter EJ, Capone DG & Rueter JG (Eds) Marine Pelagic Cyanobacteria: Trichodesmium and other Diazotrophs (pp 211-218). Kluwer, Dordrecht, The NetherlandsGoogle Scholar
  9. Cole JJ, Lane JM, Marino R & Howarth RW (1993) Molybdenum assimilation by cyanobacteria and phytoplankton in freshwater and salt water. Limnol. Oceanogr. 38: 25-35Google Scholar
  10. D'Elia CF, Sanders JG & Boynton WR (1986) Nutrient enrichment studies in a coastal plain estuary; phytoplankton growth in large-scale, continuous cultures. Can. J. Fish. Aquat. Sci. 43: 397-406Google Scholar
  11. Doremus C (1982) Geochemical control of dinitrogen fixation in the open ocean. Biol. Oceanogr. 1: 429-435Google Scholar
  12. Durbin AE & Durbin EG (1981) Standing stock and estimated production rates of phytoplankton and zooplankton in Narragansett Bay, Rhode Island. Estuaries 4: 24-41Google Scholar
  13. Elliott BB & Mortenson LE (1975) Regulation of molybdate transport by Clostridium pasteurianum. J. Bacteriol. 127: 770-779Google Scholar
  14. Elmgren R & Larsson U (1997) Himmerfjarden: Forandringar i ett naringsbelastat kustekyosystem i Ostersjon. Rapport 4565. Naturvardsverket ForlagGoogle Scholar
  15. Epp GT (1995) Herbivory in the freshwater plankton: interactions of Daphnia pulicaria and filamentous cyanobacteria. PhD dissertation, Cornell University, NY, U.S.A.Google Scholar
  16. Falconer IR, Choice A & Hosja W (1992) Toxicity of edible mussels Mytilus edulis growing naturally in an estuary during a water bloom of the blue-green algae Nodularia spumigena. Environ. Toxicol. Water. Qual. 7: 119-123Google Scholar
  17. Falkowski PG ( 1997) Evolution of the nitogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387: 272-275Google Scholar
  18. Flett RJ, Schindler DW, Hamilton RD & Campbell NER (1980) Nitrogen fixation in Canadian precambrian shield lakes. Can. J. Fish. Aquat. Sci. 37: 494-505Google Scholar
  19. Fogg GE (1987) Marine planktonic cyanobacteria. In: Fay P & Baalen CV (Eds) The Cyanobacteria (pp 393-414). Elsevier, Amsterdam, The NetherlandsGoogle Scholar
  20. Fulton RS (1988) Grazing on filamentous algae by herbivorous zooplankton. Fresh. Biol. 20: 263-271Google Scholar
  21. Gallon JR (1992) Reconciling the incompatible: N2 fixation and O2. New Phytol 122: 571-609Google Scholar
  22. Gallon JR & Stal LJ (1992) N2 fixation in non-heterocystous cyanobacteria: An overview. In: Carpenter EJ, Capone DG & Rueter JG (Eds) Marine Pelagic Cyanobacteria: Trichodesmium and other Diazotrophs (pp 115-140). Kluwer, Dordrecht, The NetherlandsGoogle Scholar
  23. Gibson CE & Smith RV (1982) Freshwater plankton. In: Carr NG & Whitton BA (Eds) The Biology of Cyanobacteria (pp 463-489). Univ. of California Press, Berkeley, U.S.A.Google Scholar
  24. Gliwicz ZM & Lampert W (1990) Food thresholds in Daphnia species in the absence and presence of blue-green filaments. Ecology 71: 691-702Google Scholar
  25. Grobbelaar JU and House WA (1995) Phosphorus as a limiting resource in inland waters: interactions with nitrogen. In: Tiessen H (Ed.) Phosphorus in the Global Environment (pp 255-273). Wiley, ChichesterGoogle Scholar
  26. Gronlund L, Kononen K, Lahdes E and Makela K (1996) Community development and modes of phosphorus utilization in a late summer ecosystem in the central Gulf of Finland, the Baltic Sea. Hydrobiol. 331: 97-108Google Scholar
  27. Haney JF (1987) Field studies on zooplankton-cyanobacteria interactions. New Zeal. J. Mar. Fresh. Res. 21: 467-475Google Scholar
  28. Hansson L-A, Bergman E & Cronberg G (1998) Size structure and succession in phytoplankton communities: the impact of interactions between herbivory and predation. Oikos 81: 337-345Google Scholar
  29. Hearn CJ & Lukatelich RJ (1990) Dynamics of Peel-Harvey Estuary, Southwest Australia. In: Cheng, RT (Ed.) Residual Currents and Long-term Transport. Coastal and Estuarine Studies 38 (pp 431-450). Springer-Verlag, New York, U.S.A.Google Scholar
  30. Holm NP, Ganf GG & Shapiro J (1983) Feeding and assimilation rates of Daphnia pulex fed Aphanizomenon flos-aquae. Limol. Oceanogr. 28: 677-687Google Scholar
  31. Horne AJ (1977) Nitrogen fixation — a review of this phenomenon as a polluting process. Prog. Water Technol. 8: 359-372Google Scholar
  32. Horne AJ & Goldman CR (1972) Nitrogen fixation in Clear Lake, California. I. Seasonal variation and the role of heterocysts. Limnol. Oceanogr. 17: 678-692Google Scholar
  33. Horne AJ, Dillard JE, Fujita DK & Goldman CR (1972) Nitrogen fixation in Clear Lake, California. II. Synoptic studies on the autumn Anabaena bloom. Limnol. Oceanogr. 17: 693-703Google Scholar
  34. Horne AJ, Sandusk JC & Carmiggelt CJW (1979) Nitrogen fixation in Clear Lake, California. 3. Repetitive synoptic sampling of the spring Aphanizomenon blooms. Limnol. Oceanogr. 24: 316-328Google Scholar
  35. Howarth RW (1988) Nutrient limitation of net primary production in marine ecosystems. Ann. Rev. Ecol. Syst. 19: 89-110Google Scholar
  36. Howarth RW & Cole JJ (1985) Molybdenum availability, nitrogen limitation, and phytoplankton growth in natural waters. Science 229: 653-655Google Scholar
  37. Howarth RW, Marino R, Lane J & Cole JJ (1988a) Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Rates and importance. Limnol. Oceanogr. 33: 669-687Google Scholar
  38. Howarth RW, Marino R & Cole JJ (1988b) Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 2. Biogeochemical controls. Limnol. Oceanogr. 33: 688-701Google Scholar
  39. Howarth RW & Marino R (1990) Nitrogen-fixing cyanobacteria in the plankton of lakes and estuaries: A reply to the comment by Smith. Limnol. Oceanogr. 35: 1859-1863Google Scholar
  40. Howarth RW, Butler T, Lunde K, Swaney D & Chu CR (1993) Turbulence and planktonic nitrogen fixation: a mesocosm experiment. Limnol. Oceanogr. 38: 1696-1711Google Scholar
  41. Howarth RW, Swaney D, Marino R, Butler TJ & Chu CR (1995) Turbulence does not prevent nitrogen fixation by plankton in estuaries and coastal seas (reply to the comment of Paerl et al.). Limnol. Oceanogr. 40: 639-643Google Scholar
  42. Howarth RW & Marino R (1998) A mechanistic approach to understanding why so many estuaries and brackish waters are nitrogen limited. In: Effects of Nitrogen in the Aquatic Environment, KVA Report 1998: 1 (pp 117-136). Kungl. Vetenskapsakademien (Royal Swedish Academy of Sciences), StockholmGoogle Scholar
  43. Huber AL (1986) Nitrogen fixation by Nodularia spumigena Mertens (Cyanobacteriaceae). 1: Field Studies and the contribution of blooms to the nitrogen budget of the Peel-Harvey Estuary, Western Australia. Hydrobiologia 131: 193-203Google Scholar
  44. Huising J & Matrone G (1975) Biological interactions of sulfate and molybdate. Environ. Health Perspect. 10: 265Google Scholar
  45. James MR & Forsyth DJ (1990) Zooplankton-phytoplankton interactions in a eutrophic lake. J. Plank. Res. 12: 455-472Google Scholar
  46. Jones GS, Blackburn SI & Parker NS (1994) A toxic bloom of Nodularia spumigena Mertens in Orielton Lagoon, Tasmania. Aust. J. Mar. Fresh. Res. 45: 787-800Google Scholar
  47. Karentz D & Smayda TJ (1998) Temporal patterns and variations in phytoplankton community organization and abundance in Narragansett Bay during 1959–1980. J. Plank Res. 20: 145-168Google Scholar
  48. Kling HJ, Findlay DL & Komárek J (1994) Aphanizomenon schindleri sp. nov.: a new nostocacean cyanoprokaryote from the Experimental Lakes Area, northwestern Ontario. Can. J. Fish. Aquat. Sci. 51: 2267-2273Google Scholar
  49. Lehtimaki J, Moisander P, Sivonen K & Kononen K (1997) Growth, nitrogen fixation, and nodularin production by two Baltic Sea cyanobacteria. Appl. Environ. Microbiol. 63: 1647-1656Google Scholar
  50. Leibold MA, Chase JM, Shurin JB & Downing AL (1997) Species turnover and the regulation of trophic structure. Ann. Rev. Ecol. Syst. 28: 467-494Google Scholar
  51. Lindahl G & Wallstrom K (1985) Nitrogen fixation (acetylene reduction) in planktonic cyanobacteria in Oregrundsgrepen, SW Bothnian Sea. Arch. Hydrobiol. 104: 193-204Google Scholar
  52. Lukatelich RJ & McComb AJ (1986) Nutrient levels and the development of diatom and blue green algal blooms in a shallow Australian estuary. J. Plank. Res. 8: 597-618Google Scholar
  53. Lynch M & Shapiro J (1981) Predation, enrichment, and phytoplankton community structure. Limnol. Oceanogr. 26: 86-102Google Scholar
  54. Marino R, Howarth RW, Shamess J & Prepas EE (1990) Molybdenum and sulfate as controls on the abundance of nitrogen-fixing cyanobacteria in saline lakes in Alberta. Limnol. Oceanogr. 35: 245-259Google Scholar
  55. Martin, JH, Coale KM, Johnson, KS, Fitzwater, SE, Gordon RM, Tanner SJ, Hunter CN, Elrod VA, Nowicki JL, Coley TL, Barber RT, Lindly S, Watson AJ, van Scoy K, Law CS, Liddicoat MI, Ling R, Stanton T, Stockelt J, Collins C, Anderson A, Bidigare R, Ondruske M, Latasa M, Millero FJ, Lee K, Yao W, Zhang JZ, Friederich G, Sakamoto C, Chavez F, Buck K, Kolber Z, Green R, Falkowski P, Chisholm SW, Hoge F, Swift R, Yungel J, Turner S, Nightingale P, Hatton A, Liss P & Tindale NW (1994) Testing the iron hypothesis in ecosystems of the equatorical Pacific Ocean. Nature 371: 123-129Google Scholar
  56. Michaels AF, Olson D, Sarmiento JL, Ammerman JW, Fanning K, Jahnke R, Knap AH, Lipschultz F & Prospero JM (1996) Inputs, losses and transformations of nitrogen and phosphorus in the pelagic North Atlantic Ocean. Biogeochemistry 35: 181-226Google Scholar
  57. Moisander P, Lehtimaki J, Sivonen K & Kononen K (1996) Comparison of 15N2 and acetylene reduction methods for the measurement of nitrogen fixation by Baltic Sea cyanobacteria. Phycologia 35: 140-146Google Scholar
  58. Morel FMM & Hudson RJ (1985) The geobiological cycle of trace elements in aquatic systems: Redfield revisited. In: Stumm W (Ed.) Chemical Processes in Lakes (pp 251-282). Wiley, New York, U.S.A.Google Scholar
  59. Nalewajio C & Lean DRS (1978) Phosphorus kinetics — algal growth relationships in batch cultures. Mitt int. Verein. theor. angew. Limnol. 21: 184-192Google Scholar
  60. Niemisto L, Rinne I, Melsvasalo T, Niemei Å (1989) Blue-green algae and their nitrogen fixation in the Baltic Sea in 1980, 1982, and 1984. Meri 17: 1-59Google Scholar
  61. Nixon SW & Pilson MEQ (1983) Nitrogen in estuarine and coastal marine ecosystems. In: Carpenter EJ & Capone DG (Eds) Nitrogen in the Marine Environment (pp 565-648). Academic, New York, U.S.A.Google Scholar
  62. NRC (1993) Managing wastewater in coastal urban areas. National Research Council, Washington, DC, U.S.A.Google Scholar
  63. Ogawa FE & Carr JF (1969) The influence of nitrogen on heterocyst production in blue-green algae. Limnol. Oceanogr. 14: 342-351Google Scholar
  64. Pace ML (1986) An empirical analysis of zooplankton community size structure across lake trophic gradients. Limnol. Oceanogr. 31: 45-55Google Scholar
  65. Pace ML, Findlay SEG & Lints D (1992) Zooplankton in advective environments: the Hudson River community and a comparative analysis. Can. J. Fish. Aquat. Sci. 49: 1060-1069Google Scholar
  66. Paerl HW (1985) Microzone formation: Its role in the enhancement of aquatic N2 fixation. Limnol. Oceanogr. 30: 1246-1252Google Scholar
  67. Paerl HW (1990) Physiological ecology and regulation of N2 fixation in natural waters. In: Marshall KC (Ed.) Advances in Microbial Ecology (pp 305-343). Plenum, NY, U.S.A.Google Scholar
  68. Rowell A & Kerby NW (1991) Cyanobacteria and their symbionts. In: Dilworth MJ & Glenn AR (Eds) Biology and Biochemistry of Nitrogen Fixation. Studies in Plant Science 1 (pp 373-407). Elsevier, New York, U.S.A.Google Scholar
  69. Rueter JG (1982) Theoretical Fe limitations of microbial N2 fixation in the oceans. EOS 63: 945Google Scholar
  70. Schaffner WR, Hairston NG, jr & Howarth RW (1994) Feeding rates and filament clipping by crustacean zooplankton consuming cyanobacteria. Verh. Internat. Verein. Limnol. 25: 2375-2381Google Scholar
  71. Schindler DW (1977) Evolution of phosphorus limitation in lakes. Science 195: 260-262Google Scholar
  72. Sellner KG, Olson MM & Kononen K (1994) Copepod grazing in a summer cyanobacteria bloom in the Gulf of Finland. Hydrobiologia 292/293: 249-254Google Scholar
  73. Stout PR & Meagher WR (1948) Studies of the molybdenum nutrition of plants with radioactive molybdenum. Science 108: 471-473Google Scholar
  74. Tackx MLM, Bakker C & Van Rijswijk P (1990) Zooplankton grazing pressure in the Oosterschelde (The Netherlands). Neth. J. Sea Res. 25: 405-415Google Scholar
  75. Turpin DH, Layzell DB & Elrifi IR (1985) Modeling the C economy of Anabaena flos-aquae. Plant. Physiol. 78: 746-752Google Scholar
  76. Uitto A (1996) Summertime herbivory of coastal mesozooplankton and metazoan microplankton in the northern Baltic. Mar. Ecol. Prog. Ser. 132: 47-56Google Scholar
  77. Valiela I (1991) Ecology of coastal ecosystems. In: Barnes RSK & Mann DH (Eds) Fundamentals of Aquatic Ecology (pp 57-76). Blackwell Scientific, OxfordGoogle Scholar
  78. Varmo R, Viljamaa H, Pesonen L & Rinne I (1989) Two manipulated inner bays in the Helsinki Sea area, Northern Gulf of Finland. Aqua. Fenn. 19: 67-74Google Scholar
  79. Vitousek PM & Field CB (this volume) Ecosystem constraints to symbiotic nitrogen fixers: A simple model and its implications. Biogeochemistry: in pressGoogle Scholar
  80. Vitousek PM & Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13: 87-115Google Scholar
  81. Wallstrom K (1988) The occurrence of Aphanizomenon flos-aquae (Cyanophyceae) in a nutrient gradient in the Baltic. Kieler Meeresforschungen Sonderheft 6: 210-220Google Scholar
  82. Wallstrom K (1991) Ecological studies on nitrogen fixing blue-green algae and on nutrient limitation of phytoplankton in the Baltic Sea. PhD thesis, Uppsala University. Uppsala, SwedenGoogle Scholar
  83. Wallstrom K, Johansson S & Larsson U (1992) Effects of nutrient enrichment on planktonic blue-green algae in the Baltic Sea. Acta. Phytogeogr. Suec. 78: 25-31Google Scholar
  84. White JR & Roman MR (1992) Seasonal study of grazing by metazoan zooplankton in the mesohaline Chesapeake Bay. Mar. Ecol. Prog. Ser. 86: 251-261Google Scholar
  85. Zevenboom W & Mur LR (1978) Nitrogen uptake and pigmentation of N-limited chemostat cultures and natural populations of Oscillatoria agardhii. Mitt int. Verein. theor. angew. Limnol. 21: 261-274Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Robert W. Howarth
    • 1
  • Francis Chan
    • 1
  • Roxanne Marino
    • 1
  1. 1.Program in Biogeochemistry & Environmental ChangeCornell UniversityIthacaU.S.A.

Personalised recommendations