Acta Applicandae Mathematica

, Volume 56, Issue 2–3, pp 139–153 | Cite as

The ‘Three-Line’ Theorem for the Vinogradov C-Spectral Sequence of the Yang–Mills Equations

  • Dmitri Gessler
Article

Abstract

The Vinogradov C-spectral sequence for the Yang–Mills equations is considered and the ‘three-line’ theorem for the term E1 of the C-spectral sequence is proved: E1 p,q = 0 if p > 0 and q < n − 2, where n is the dimension of spacetime.

nonlinear differential equations spectral sequences Spencer cohomology Yang–Mills equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, I. M.: Introduction to the variational bicomplex, in: Mathematical Aspects of Classical Field Theory, Contemp. Math. 132, Amer. Math. Soc., Providence, R.I., 1992, pp. 51-73.Google Scholar
  2. 2.
    Barnich, G., Brandt, F., and Henneaux, M.: Local BRST cohomology in the antifield formalism: I. General theorems, Comm. Math. Phys. 174 (1995), 57-92, hep-th/9405109.Google Scholar
  3. 3.
    Bryant, R. L. and Griffiths, P. A.: Characteristic cohomology of differential systems (I): General theory, J. Amer. Math. Soc. 8 (1995), 507-596.Google Scholar
  4. 4.
    Gessler, D.: On the Vinogradov \({\mathcal{C}}\)-spectral sequence for determined systems of differential equations, Differential Geom. Appl. 7 (1997), 303-324.Google Scholar
  5. 5.
    Verbovetsky, A.: Notes on the horizontal cohomology, in: M. Henneaux, J. Krasil'shchik, and A. Vinogradov (eds), Secondary Calculus and Cohomological Physics, Contemp. Math. 219, Amer. Math. Soc., Providence, R.I., 1998, pp. 211-231.Google Scholar
  6. 6.
    Henneaux, M. and Teitelboim, C.: Quantization of Gauge Systems, Princeton University Press, 1992.Google Scholar
  7. 7.
    Khorkova, N. G.: On the \({\mathcal{C}}\)-spectral sequence of differential equations, Differential Geom. Appl. 3 (1993), 219-243.Google Scholar
  8. 8.
    Krasil'shchik, I. S., Lychagin, V. V., and Vinogradov, A. M.: Geometry of Jet Spaces and Nonlinear Differential Equations, Gordon and Breach, New York, 1986.Google Scholar
  9. 9.
    Marvan, M.: On the \({\mathcal{C}}\)-spectral sequence with ‘general’ coefficients, in: Differential Geometry and Its Applications, Proc. Conf., 27 Aug.–2 Sept. 1989, Brno, Czechoslovakia, World Scientific, Singapore, 1990, pp. 361-371.Google Scholar
  10. 10.
    Tsujishita, T.: Homological method of computing invariants of systems of differential equations, Differential Geom. Appl. 1 (1991), 3-34.Google Scholar
  11. 11.
    Vinogradov, A. M.: A spectral sequence associated with a nonlinear differential equation, and algebro-geometric foundations of Lagrangian field theory with constraints, Soviet Math. Dokl. 19(1) (1978), 144-148.Google Scholar
  12. 12.
    Vinogradov, A. M.: Geometry of nonlinear differential equations, Itogi nauki i tekniki, Problemy geometrii 11 (1980), 89-134 (Russian); English transl. in J. Soviet Math. 17 (1981), 1624–1649.Google Scholar
  13. 13.
    Vinogradov, A. M.: The \({\mathcal{C}}\)-spectral sequence, Lagrangian formalism and conservation laws, J. Math. Anal. Appl. 100 (1984), 1-129.Google Scholar
  14. 14.
    Vinogradov, A. M. (ed.): Symmetries of Partial Differential Equations: Conservation Laws, Applications, Algorithms, Kluwer Acad. Publ., Dordrecht, 1989.Google Scholar
  15. 15.
    Vinogradov, A. M.: From symmetries of partial differential equations towards secondary ('quantized') calculus, J. Geom. Phys. 14 (1994), 146-194.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Dmitri Gessler
    • 1
  1. 1.School 53MoscowRussia

Personalised recommendations