Breast Cancer Research and Treatment

, Volume 52, Issue 1–3, pp 79–98 | Cite as

Prognostic and predictive value of p53 and p21 in breast cancer

  • Richard M. Elledge
  • D. Craig Allred


The prognostic and predictive value of p53 has been extensively studied in breast cancer. p53 serves a multifunctional role as a transcriptional regulator, genomic stabilizer, inhibitor of cell cycle progression, facilitator of apoptosis, and also perhaps an inhibitor of angiogenesis. Abrogation of its function should therefore lead to a more aggressive breast cancer phenotype and a worse clinical outcome, and indeed the preponderance of studies confirm this, with the risk of recurrence and death increasing by 50% or more if p53 is abnormal. Lack of unanimity of results may be due to differences in technique, study design, or population, as well as the subjectivity inherent in some approaches; however, the complexity and random nature of genomic change present in cancer cells may well also contribute to the lack of unanimity.

Because many anticancer agents may exert a therapeutic effect through genomic damage and subsequent triggering of apoptosis, and because p53 can respond to genomic damage and facilitate apoptosis, it can be hypothesized that an intact p53 would predict sensitivity to therapy. Present data in breast cancer, however, does not clearly indicate that this is the case. There are several potential explanations. Study designs to accurately test the predictive value of a molecular marker are more exacting and difficult to achieve than prognostic studies. There may also be multiple alternative pathways, not involving p53, that play a part in determining the therapeutic effect of a treatment.

The prognostic value of a downstream effector of p53 has also been assessed, though less extensively. p21 is transcriptionally upregulated by p53 and is an inhibitor of cyclin-dependent kinases and thus of cell cycle progression. Higher levels of p21 might indicate a more indolent type of breast cancer. However, data from a number of clinical studies is very conflicting, and at present p21 is not a promising prognostic factor in breast cancer.

p53 gene p53 protein breast cancer prognosis p21 WAF-1 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Raycroft L, Wu H, Lozano G: Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science 249:1049-1051, 1990Google Scholar
  2. 2.
    Farmer G, Bargonetti J, Zhu H, Friedman P, Prywes R, Prives C: Wild-type p53 activates transcription in vitro. Nature 358:83-86, 1992Google Scholar
  3. 3.
    Kern S, Kinzler K, Bruskin A, Jarosz D, Friedman P, Prives C, Vogelstein B: Identification of p53 as a sequence-specific DNA-binding protein. Science 252:1708-1711, 1991Google Scholar
  4. 4.
    Zambetti G, Bargonetti J, Walker K, Prives C, Levine A: Wild-type p53 mediates positive regulation of gene expression through a specific DNA sequence element. Genes & Dev 6:1143-1152, 1992Google Scholar
  5. 5.
    Wu X, Bayle JH, Olson D, Levine AJ: The p53-mdm-2 autoregulatory feedback loop. Genes & Dev 7:1126-1132, 1993Google Scholar
  6. 6.
    El-Deiry W, Tokino T, Velculescu V, Levy D, Parsons R, Trent J, Lin D, Mercer W, Kinzler K, Vogelstein B: WAF1, a potential mediator of p53 tumor suppression. Cell 75:817-825, 1993Google Scholar
  7. 7.
    Mack D, Vartikar J, Pipas J, Laimins L: Specific repression of TATA-mediated but not initiator-mediated transcription by wild-type p53. Nature 363:281-283, 1993Google Scholar
  8. 8.
    Thut C, Chen J, Klemm R, Tjian R: p53 transcription activation mediated by coactivator TAFll40 and TAFll60. Science 267:100-104, 1995Google Scholar
  9. 9.
    Cox LS, Hupp T, Midgley CA, Lane DP: A direct effect of activated human p53 on nuclear DNA replication. EMBO J 14:2099-2105, 1995Google Scholar
  10. 10.
    Dutta A, Ruppert J, Aster J, Winchester E: Inhibition of DNA replication factor RPA by p53. Nature 365:79-82, 1993Google Scholar
  11. 11.
    Lin D, Shields M, Ullrich S, Appella E, Mercer W: Growth arrest induced by wild-type p53 protein blocks cells prior to or near the restriction point in late G1 phase. Proc Natl Acad Sci 89:9210-9214, 1992Google Scholar
  12. 12.
    Hermeking H, Lengauer C, Polyak K, He T, Zhang L, Thiagalingam S, Kinzler K, Vogelstein B: 14-3-3σi is a p53-regulated inhibitor of G2/M progression. Mol Cell 1:3-11, 1997Google Scholar
  13. 13.
    Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M: Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352:345-347, 1991Google Scholar
  14. 14.
    Clarke A, Purdie C, Harrison D, Morris R, Bird C, Hooper M, Wyllie A: Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362:849-852, 1993Google Scholar
  15. 15.
    Bouck N: P53 and angiogenesis. Biochim Biophys Acta 1287:63-66, 1996Google Scholar
  16. 16.
    Dameron K, Volpert O, Tainsky M, Bouck N: Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265:1582-1584, 1994Google Scholar
  17. 17.
    Kaghad M, Bonnet H, Yang A, Creancier L, Biscan J, Valent A, Minty A, Chalon P, Lelias J, Dumont X, Ferrara P, McKeon F, Caput D: Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90:809-819, 1997Google Scholar
  18. 18.
    Runnebaum I, Yee J-K, Kieback D, Sukumar S, Friedmann T: Wild-type p53 suppresses the malignant phenotype in breast cancer cells containing mutant p53 alleles. Anticancer Res 14:1137-1144, 1994Google Scholar
  19. 19.
    Livingstone L, White A, Sprouse J, Livanos E, Jacks T, Tlsty T: Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70:923-935, 1992Google Scholar
  20. 20.
    Mercer W, Shields M, Amin M, Sauve G, Appella E, Romano J, Ullrich S, et al: Negative growth regulation in a glioblastoma tumor cell line that conditionally expresses human wild-type p53. Proc Natl Acad Sci 87:6166-6170, 1990Google Scholar
  21. 21.
    Symonds H, Krall L, Remington L, Saenz-Robles M, Lowe S, Jacks T, Van Dyke T: p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78:703-711, 1994Google Scholar
  22. 22.
    Graeber T, Osmanian C, Jacks T, Housman D, Koch C, Lowe S, Giaccia A: Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379:88-91, 1996Google Scholar
  23. 23.
    Davidoff A, Kerns B, Inglehard J, Marks J: Maintenance of p53 alterations throughout breast cancer progression. Cancer Res 51:2605-2610, 1991Google Scholar
  24. 24.
    Allred DC, Berardo M, Prosser J, O'Connell P: Biologic and genetic features of in situ breast cancer. In: Silverstein M (ed) Ductal Carcinoma In Situ of the Breast. Williams and Wilkins, 1997, pp 37-49Google Scholar
  25. 25.
    Liu S, Edgerton S, Moore D, Shi Q, Thor A: Aberrant expression of p21WAF1/CIP1 and p53 in human primary breast cancers: associations with clinical, histologic, molecular and outcome data. Breast Cancer Res Treat 46:29, 1997Google Scholar
  26. 26.
    Elledge R, Fuqua S, Clark GM, Pujol P, Allred DC, McGuire W: Prognostic significance of p53 gene alterations in node-negative breast cancer. Breast Cancer Res Treat 26:225-235, 1993Google Scholar
  27. 27.
    Borg A, Lennerstrand J, Stenmark-Askmalm M, Ferno M, Brisfors A, Ohrvik A, Stal O, Killander D, Lane D, Brundell J: Prognostic significance of p53 overexpression in primary breast cancer: a novel luminometric immunoassay applicable on steroid receptor cytosols. Br J Cancer 71:1013-1017, 1995Google Scholar
  28. 28.
    Berns E, Klijn J, Smid M, van Staveren I, Look M, van Putten W, Foekens J: TP53 and MYC gene alterations independently predict poor prognosis in breast cancer patients. Genes Chrom & Cancer 16:170-179, 1996Google Scholar
  29. 29.
    Barnes D, Dublin E, Fisher C, Levison D, Millis R: Immunohistochemical detection of p53 protein in mammary carcinoma: an important new independent indicator of prognosis? Hum Path 24:469-476, 1993Google Scholar
  30. 30.
    Noguchi M, Kitagawa H, Kinoshita K, Miyazaki I, Saito Y, Mizukami Y: Prognostic significance of p53 and c-erbB-2 expression in operable breast cancer. Int J Oncol 2:587-591, 1993Google Scholar
  31. 31.
    Iwaya K, Tsuda H, Hiraide H, Tamaki K, Tamakuma S, Fukutomi T, Mukai K, Hirohashi S: Nuclear p53 immunoreaction associated with poor prognosis of breast cancer. Jpn J Cancer Res 82:835-840, 1991Google Scholar
  32. 32.
    Gasparini G, Weidner N, Bevilacqua P, Maluta S, Palma P, Caffo O, Barbareschi M, Boracchi P, Marubini E, Pozza F: Tumor microvessel density, p53 expression, tumor size, and peritumoral lymphatic vessel invasion are relevant prognostic markers in node-negative breast carcinoma. J Clin Oncol 12:454-466, 1994Google Scholar
  33. 33.
    Stenmark-Askmalm M, Stål O, Sullivan S, Ferraud L, Sun X, Carstensen J, Nordenskjöld B: Cellular accumulation of p53 protein: an independent prognostic factor in stage II breast cancer. Eur J Cancer 30A(2):175-180, 1994Google Scholar
  34. 34.
    Patel D, Bhatavdekar J, Chikhlikar P, Ghosh N, Suthar T, Shah N, Mehta R, Balar D: Node negative breast carcinoma: Hyperprolactinemia and/or over-expression of p53 as an independent predictor of poor prognosis compared to newer and established prognosticators. J Surg Oncol 62:86-92, 1996Google Scholar
  35. 35.
    Saitoh S, Cunningham J, De Vries E, McGovern R, Schroeder J, Hartmann A, Blaszyk H, Wold L, Schaid D, Sommer S, Kovach J: p53 gene mutations in breast cancers in midwestern US women: null as well as missense-type mutations are associated with poor prognosis. Oncogene 9:2869-2875, 1994Google Scholar
  36. 36.
    Hurlimann J, Chaubert P, Benhattar J: p53 gene alterations and p53 protein accumulation in infiltrating ductal breast carcinomas: Correlation between immunohistochemical and molecular biology techniques. Mod Path 7(4):423-428, 1994Google Scholar
  37. 37.
    Horne G, Anderson J, Tiniakos D, McIntosh G, Thomas M, Angus B, Henry J, Lennard T, Horne C: p53 protein as a prognostic indicator in breast carcinoma: a comparison of four antibodies for immunohistochemistry. Br J Cancer 73:29-35, 1996Google Scholar
  38. 38.
    Sjogren S, Inganas M, Norberg T, Lindgren A, Nordgren H, Holmberg L, Bergh J: The p53 gene in breast cancer: prognostic value of complementary DNA sequencing versus immunohistochemistry. J Natl Cancer Inst 88:173-182, 1996Google Scholar
  39. 39.
    Andersen T, Holm R, Nesland J, Heimdal K, Ottestad L, Borresen A: Prognostic significance of TP53 alterations in breast carcinoma. Br J Cancer 68:540-548, 1993Google Scholar
  40. 40.
    Thorlacius S, Thorgilsson B, Bjornsson J, Tryggvadottir L, Borresen A, Ogmundsdottir H, Eyfjord J: TP53 mutations and abnormal p53 protein staining in breast carcinomas related to prognosis. Eur J Cancer 31A:1856-1861, 1995Google Scholar
  41. 41.
    deWitte H, Foekens J, Lennerstrand J, Smid M, Look M, Klun J, Benraad T, Berns E: Prognostic significance of TP53 accumulation in human primary breast cancer: Comparison between a rapid quantitative immunoassay and SSCP analysis. Int J Cancer (Pred. Oncol.) 69:125-130, 1996Google Scholar
  42. 42.
    Marks J, Humphrey P, Wu K, Berry D, Banderenko N, Kerns B, Inglehart J: Overexpression of p53 and HER-2/neu proteins as prognostic markers in early stage breast cancer. Ann Surg 219(4):332-341, 1994Google Scholar
  43. 43.
    Sawan A, Randall B, Angus B, Wright C, Henry J, Ostrowski J, Hennessy C, Lennard T, Corbett I, Horne C: Retinoblastoma and p53 gene expression related to relapse and survival in human breast cancer. An immunohistochemical study. J Path 168:23-28, 1992Google Scholar
  44. 44.
    Seshadri R, Leong A, McCaul K, Firgaira F, Setlur V, Horsfall D: Relationship between p53 gene abnormalities and other tumour characteristics in breast-cancer prognosis. Int J Cancer (Pred. Oncol.) 69:135-141, 1996Google Scholar
  45. 45.
    Stenmark-Askmalm M, Stål O, Olsen K, Nordenskjöld B, South-East Sweden Breast Cancer Group: p53 as a prognostic factor in stage I breast cancer. Cancer 72:715-719, 1995Google Scholar
  46. 46.
    Takikawa Y, Noguchi M, Kitagawa H, Thomas M: Immunohistochemical detection of p53 and cerb-B-2 proteins: Prognostic significance in operable breast cancer. Breast Cancer 1:17-23, 1994Google Scholar
  47. 47.
    Silvestrini R, Benini E, Daidone M, Veneroni S, Boracchi P, Cappelletti V, Di Fronzo G, Veronesi U: p53 as an independent prognostic marker in lymph node-negative breast cancer patients. J Natl Cancer Inst 85:965-970, 1993Google Scholar
  48. 48.
    Gasparini G, Bevilacqua P, Boracchi P, Maluta S, Pozza F, Barbareschi M, Palma P, Mezzetti M, Harris A: Prognostic value of p53 expression in early-stage breast carcinoma compared with tumour angiogenesis, epidermal growth factor receptor, c-erbB-2, cathepsin D, DNA ploidy, parameters of cell kinetics and conventional features. Int J Oncol 4:155-162, 1994Google Scholar
  49. 49.
    Visscher D, Sarkar F, Wykes S, Kothari K, Macoska J, Crissman J: Clinicopathologic significance of p53 immunostaining in adenocarcinoma of the breast. Arch Pathol Lab Med 117:973-976, 1993Google Scholar
  50. 50.
    Friedrichs K, Gluba S, Eidtmann H, Jonat W: Overexpression of p53 and prognosis in breast cancer. Cancer 72:3641-3647, 1993Google Scholar
  51. 51.
    Pietiläinen T, Lipponen P, Aaltomaa S, Eskelinen M, Kosma V-M, Syrjänen K: Expression of p53 protein has no independent prognostic value in breast cancer. J Path 177:225-232, 1995Google Scholar
  52. 52.
    Göhring U-J, Scharl A, Heckel C, Ahr A, Combach G: p53 protein in 204 patients with primary breast carcinoma — immunohistochemical detection and clinical value as a prognostic factor. Arch Gynecol Obstet 256:139-146, 1995Google Scholar
  53. 53.
    Allred DC, Clark G, Fuqua S, Elledge R, Hilsenbeck S, Ravdin P, Yee D, Chamness GC, Osborne CK: Overexpression of p53 in node-positive breast cancer. Breast Cancer Res Treat 27:131, 1993Google Scholar
  54. 54.
    Thorlacius S, Börresen A-L, Eyfjörd J: Somatic p53 mutations in human breast carcinomas in an Icelandic population: a prognostic factor. Cancer Res 53:1637-1641, 1993Google Scholar
  55. 55.
    Isola J, Visakorpi T, Holli K, Kallioniemi O-P: Association of overexpression of tumor suppressor protein p53 with rapid cell proliferation and poor prognosis in node-negative breast cancer patients. JNCI 84:1109-1114, 1992Google Scholar
  56. 56.
    MacGrogan G, Bonichon F, Mascarel I, Trojani M, Durand M, Avril A, Coindre J: Prognostic value of p53 in breast invasive ductal carcinoma: an immunohistochemical study on 942 cases. Breast Cancer Res Treat 36:71-81, 1995Google Scholar
  57. 57.
    Allred DC, Clark GM, Elledge R, Fuqua SAW, Brown R, Chamness GC, Osborne CK, McGuire WL: Association of p53 protein expression with tumor cell proliferation rate and clinical outcome in node-negative breast cancer. JNCI 85:200-206, 1993Google Scholar
  58. 58.
    Thor A, Moore D, Edgerton S, Kawasaki E, Reihsaus E, Lynch H, Marcus J, Schwartz L, Chen L-C, Mayall B, Smith H: Accumulation of p53 tumor suppressor gene protein: An independent marker of prognosis in breast cancers. JNCI 84:845-855, 1992Google Scholar
  59. 59.
    van Staveren I, Foekens J, Klijn J, Smid M, Look M, Meijer-van Gelder M, Berns P: TP53 gene alterations in human primary breast cancer: mutational spectrum analysis and prognostic value. Proc Am Assoc Cancer Res 37:3904, 1996Google Scholar
  60. 60.
    Poller D, Hutchings C, Galea M, Bell J, Nicholson R, Elston C, Blamey R, Ellis I: p53 protein expression in human breast carcinoma: relationship to expression of epidermal growth factor receptor, c-erbB-2 protein overexpression, and oestrogen receptor. Br J Cancer 66:583-588, 1992Google Scholar
  61. 61.
    Soong R, Iacopetta B, Harvey J, Sterrett G, Dawkins H, Hahnel R, Robbins P: Detection of p53 gene mutation by rapid PCS-SSCP and its association with poor survival in breast cancer. Int J Cancer 74:642-647, 1997Google Scholar
  62. 62.
    Ostrowski J, Sawan A, Henry L, Wright C, Henry J, Hennessy C, Lennard T, Angus B, Horne C: p53 expression in human breast cancer related to survival and prognostic factors: an immunohistochemical study. J Pathol 164:75-81, 1991.Google Scholar
  63. 63.
    Cunningham J, Ingle J, Jung S, Cha S, Wold L, Farr G, Witzig T, Krook J, Wieand H, Kobvach J: p53 gene expression in node-positive breast cancer: relationship to DNA ploidy and prognosis. J Natl Cancer Inst 86:1871-1873, 1994Google Scholar
  64. 64.
    Barbareschi M, Caffo O, Doglioni C, Fina P, Marchetti A, Buttitta F, Leek R, Morelli L, Leonardi E, Bevilacqua G, Dalla Palma P, Harris L: p21WAF1 immunohistochemical expression in breast carcinoma: correlation with clinicopathological data, oestrogen receptor status, MIB1 expression, p53 gene and protein alterations and relapse-free survival. Br J Cancer 74:208-215, 1996Google Scholar
  65. 65.
    Jacquemier J, Moles J, Penault-Llorca F, Adelaide J, Torrente M, Viens P, Birnbaum D, Theillet C: p53 immunohistochemical analysis in breast cancer with four monoclonal antibodies: comparison of staining and PCR-SSCP results. Br J Cancer 69:846-852, 1994Google Scholar
  66. 66.
    Gretarsdottir S, Tryggvadottir L, Jonasson JG, Sigurdsson H, Olafsdottir K, Agnarsson B, Ogmundsdottir H, Eyfjord JE: TP53 mutation analyses on breast carcinomas: a study of paraffin-embedded archival material. Br J Cancer 74:555-561, 1996Google Scholar
  67. 67.
    Hanzal E, Gitsch G, Kohlberger P, Dadak C, Miechowiecka N, Breitenecker G: Immunohistochemical detection of mutant p53-suppressor gene product in patients with breast cancer: Influence on metastasis-free survival. Anticancer Res 12:2325-2330, 1992Google Scholar
  68. 68.
    Lipponen P, Ji H, Aaltomaa S, Syrjanen S, Syrjanen K: p53 protein expression in breast cancer as related to histopathological characteristics and prognosis. Int J Cancer 55:51-56, 1993Google Scholar
  69. 69.
    Masood S, Barnes R, Villas B, Wilson W, Shi S, Clark G, Tandon A: p53 oncosuppressor protein in carcinoma of the breast. Lab Invest 68:17A, 1993Google Scholar
  70. 70.
    Wiltschke C, Kindas-Muegge I, Steininger A, Reiner A, Reiner G, Preis P: Coexpression of HER-2/neu and p53 is associated with a shorter disease-free survival in node-positive breast cancer patients. Clin Res Clin Oncol 737-742, 1994Google Scholar
  71. 71.
    Rosen PR, Lesser ML, Arroyo CD, Cranor M, Borgen P, Norton L: p53 in node-negative breast carcinoma: An immunohistochemical study of epidemiologic risk factors, histologic features, and prognosis. J Clin Oncol 13:821-830, 1995Google Scholar
  72. 72.
    Nakopoulou L, Alexiadou A, Theodoropoulos G, Lazaris A, Tzonou A, Keramopoulos A: Prognostic significance of the co-expression of p53 and c-erbB-2 proteins in breast cancer. J Pathol 179:31-38, 1996Google Scholar
  73. 73.
    Caleffi M, Teague M, Jensen R, Vnencak-Jones C, Dupont W, Parl F: p53 gene mutations and steroid receptor status in breast cancer. Cancer 73:2147-2156, 1994Google Scholar
  74. 74.
    Domagala W, Striker G, Szadowska A, Dukowicz A, Harezga B, Osborn M: p53 protein and vimentin in invasive ductal NOS breast carcinoma — relationship with survival and sites of metastases. Eur J Cancer 30A:1527-1534, 1994Google Scholar
  75. 75.
    Bosari S, Lee A, Viale G, Heatley G, Coggi G: Abnormal p53 immunoreactivity and prognosis in node-negative breast carcinomas with long-term follow-up. Virchows Archiv A Pathol Anat 421:291-295, 1992Google Scholar
  76. 76.
    Haerslev T, Jacobsen G: An immunohistochemical study of p53 with correlations to histopathological parameters, c-erbB-2, proliferating cell nuclear antigen, and prognosis. Hum Pathol 26:295-301, 1995Google Scholar
  77. 77.
    Elledge R: Assessing p53 status in breast cancer prognosis: where should you put the thermometer if you think your p53 is sick? J Natl Cancer Inst 88:141-143, 1996Google Scholar
  78. 78.
    Bueso-Ramos C, Manshouri T, Haidar M, Yang Y, McCown P, Ordonez N, Glassman A, Sneige N, Albitar M: Abnormal expression of MDM-2 in breast carcinomas. Breast Cancer Res Treat 37:179-188, 1996Google Scholar
  79. 79.
    Momand J, Zambetti G, Olson D, George D, Levine A: The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237-11245, 1992Google Scholar
  80. 80.
    Jacobs T, Prioleau J, Stillman I, Schnitt S: Loss of tumor marker-immunostaining intensity on stored paraffin slides of breast cancer. J Natl Cancer Inst 88:1054-1059, 1996Google Scholar
  81. 81.
    Elledge R, Clark GM, Fuqua SAW, Yu Y-Y, Allred DC: p53 protein accumulation detected by five different antibodies: Relationship to prognosis and heat shock protein 70 in breast cancer. Cancer Res 54:3752-3757, 1994Google Scholar
  82. 82.
    Hayes D, Bast R, Desch C, Fritsche H, Kemeny N, Jessup J, Locker G, Macdonald J, Mennel R, Norton L, Ravdin P, Taube S, Winn R: Tumor marker utility grading system: a framework to evaluate clinical utility of tumor markers. J Natl Cancer Inst 88:1456-1466, 1996Google Scholar
  83. 83.
    Kuukasjärvi T, Karhu R, Tanner M, Kähkönen M, Schäffer A, Nupponen N, Pennanen S, Kallioniemi A, Kallioniemi O, Isola J: Genetic heterogeneity and clonal evolution underlying development of asynchronous metastasis in human breast cancer. Cancer Res 57:1597-1604, 1997Google Scholar
  84. 84.
    Jacquemier J, Penault-Llorca F, Viens P, Houvenaeghel G, Hassoun J, Terrente M, Adelaide J, Birnbaum D: Breast cancer response to adjuvant chemotherapy in correlation with erbB2 and p53 expression. Anticancer Res 14:2773-2778, 1994Google Scholar
  85. 85.
    Stal O, Askmalm M, Wingren S, Rutqvist L, Skoog L, Ferraud L, Sullivan S, Carstensen J, Nordenskjold B: p53 expression and the result of adjuvant therapy of breast cancer. Acta Oncologica 34:767-770, 1995Google Scholar
  86. 86.
    Resnick J, Sneige N, Kemp B, Sahin A, Ordonez N, Frye D, Hortobagyi G: p53 and c-erbB-2 expression and response to preoperative chemotherapy in locally advanced breast carcinoma. Breast Dis 8:149-158, 1995Google Scholar
  87. 87.
    Aas T, Borresen A, Geisler S, Smith-Sorensen B, Johnsen H, Varhaug J, Akslen L, Lonning P: Specific p53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med 2:811-814, 1996Google Scholar
  88. 88.
    MacGrogan G, Mauriac L, Durand M, Bonichon F, Trojani M, de Mascarel I, Coindre J: Primary chemotherapy in breast invasive carcinoma: predictive value of the immunohistochemical detection of hormonal receptors, p53, c-erbB-2, MiB1, pS2 and GSTπ. Br J Cancer 74:1458-1465, 1996Google Scholar
  89. 89.
    Faille A, De Cremoux P, Extra J, Linares G, Espie M, Bourstyn E, De Rocquancourt A, Giacchetti S, Marty M, Calvo F: p53 mutations and overexpression in locally advanced breast cancers. Br J Cancer 69:1145-1150, 1994Google Scholar
  90. 90.
    Jansson T, Inganas M, Sjogren S, Norberg T, Lindgren A, Holmberg L, Bergh J: p53 status predicts survival in breast cancer patients treated with or without postoperative radiotherapy: a novel hypothesis based on clinical findings. J Clin Oncol 13: 2745-2751, 1995Google Scholar
  91. 91.
    Silvestrini R, Veneroni S, Benini E, Daidone M, Luisi A, Leutner M, Maucione A, Kenda R, Zucali R, Veronesi U: Expression of p53, glutathione S-transferase-π, and bcl-2 proteins and benefit from adjuvant radiotherapy in breast cancer. J Natl Cancer Inst 89:639-645, 1997Google Scholar
  92. 92.
    Bergh J, Norberg T, Sjogren S, Lindgren A, Holmberg L: Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy. Nat Med 1:1029-1034, 1995Google Scholar
  93. 93.
    Degeorges A, Roquancourt A, Extra J, Espie M, Bourstyn E, de Cremoux P, Soussi T, Marty M: Is p53 a protein that predicts the response to chemotherapy in node negative breast cancer? Breast Cancer Res Treat, in press, 1998Google Scholar
  94. 94.
    Elledge R, Gray R, Mansour Yu Y, Clark G, Ravdin P, Osborne CK, Gilchrist K, Davidson N, Robert N, Tormey D, Allred DC: Accumulation of p53 protein as a possible predictor of response to adjuvant combination chemotherapy with cyclophosphamide, methotrexate, fluorouracil, and prednisone for breast cancer. JNCI 87(16):1254-1256, 1995Google Scholar
  95. 95.
    Elledge R, Green S, Howes L, Clark G, Berardo M, Allred DC, Pugh R, Ciocca D, Ravdin P, O'Sullivan J, Rivkin S, Martino S, Osborne CK: bcl-2, p53, and response to tamoxifen in ER-positive metastatic breast cancer: A Southwest Oncology Group study. J Clin Oncol, in pressGoogle Scholar
  96. 96.
    Berns E, Klijn J, van Putten W, de Witte H, Look M, Meijer-van Gelder M, Willman K, Portengen H, Benraad T, Foekens J: p53 protein accumulation predicts poor response to tamoxifen therapy of patients with recurrent breast cancer. J Clin Oncol 16:121-127, 1998Google Scholar
  97. 97.
    Archer S, Eliopoulos A, Spandidos D, Barnes D, Ellis I, Blamey R, Nicholson R, Robertson J: Expression of ras p21, p53 and c-erbB-2 in advanced breast cancer and response to first line hormonal therapy. Br J Cancer 72:1259-1266, 1995Google Scholar
  98. 98.
    Muss H, Thor A, Berry D, Kute T, Liu E, Koerner F, Cirrincione C, Budman D, Wood W, Barcos M, Henderson I: c-erbB-2 expression and response to adjuvant therapy in women with node-positive early breast cancer. N Engl J Med 330:1260-1266, 1994Google Scholar
  99. 99.
    Clahsen P, van de Velde C, Duval C, Pallud C, Mandard A-M, Delobelle-Deroide A, van den Broek L, Sahmoud T, van de Vijver M: p53 protein accumulation and response to adjuvant chemotherapy in premenopausal women with node-negative early breast cancer. J Clin Oncol 16(2):470-479, 1998Google Scholar
  100. 100.
    Kyprianou N, English H, Davidson N, Isaacs J: Programmed cell death during regression of the MCF-7 human breast cancer following estrogen ablation. Cancer Res 51:162-166, 1991Google Scholar
  101. 101.
    Wärri A, Huovinen R, Laine A, Martikainen P, Härkönen P: Apoptosis in toremifene-induced growth inhibition of human breast cancer cells in vivo and in vitro. JNCI 85:1412-1418, 1993Google Scholar
  102. 102.
    Perry R, Kang Y, Greaves B: Effects of tamoxifen on growth and apoptosis of estrogen-dependent and-independent human breast cancer cells. Ann Surg Oncol 2(3):238-245, 1995Google Scholar
  103. 103.
    Elledge R, Lock-Lim S, Allred DC, Hilsenbeck S, Cordner L: p53 mutation and tamoxifen resistance in breast cancer. Clin Cancer Res 1:1203-1208, 1995Google Scholar
  104. 104.
    Ravdin P, Green S, Door T, McGuire W, Fabian C, Pugh R, Carter R, Rivkin S, Borst J, Belt R, Metch B, Osborne CK: Prognostic significance of progesterone receptor levels in estrogen receptor-positive patients with metastatic breast cancer treated with tamoxifen: results of a prospective Southwest Oncology Group study. J Clin Oncol 10(8):1284-1291, 1992Google Scholar
  105. 105.
    Shaw P, Bovey R, Tardy S, Sahli R, Sordat B, Costa J: Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc Natl Acad Sci 89:4495-4499, 1992Google Scholar
  106. 106.
    Fujiwara T, Grimm E, Mukhopadhyay T, Cai D, Owen-Schaub L, Roth J: A retroviral wild-type p53 expression vector penetrates human lung cancer spheroids and inhibits growth by inducing apoptosis. Cancer Res 53:4129-4133, 1993Google Scholar
  107. 107.
    Fujiwara T, Grimm E, Mukhopadhyay T, Owen-Schaub L, Roth J: Induction of chemosensitivity in human lung cancer cells in vivo by adenovirus-mediated transfer of the wild-type p53 gene. Cancer Res 54:2287-2291, 1994Google Scholar
  108. 108.
    Lotern J, Sachs L: Hematopoietic cells from mice deficient in wild-type p53 are more resistant to induction of apoptosis by some agents. Blood 82(4):1092-1096, 1993Google Scholar
  109. 109.
    Lowe S, Ruley H, Jacks T, Housman D: p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74:957-967, 1993Google Scholar
  110. 110.
    Lowe S, Bodis S, McClatehey A, Remington L, Ruley H, Fisher D, Housman, D, Jacks T: p53 status and the efficacy of cancer therapy in vivo. Science 266:807-810, 1994Google Scholar
  111. 111.
    Mansour E, Gray R, Shatila A: Efficacy of adjuvant chemotherapy in high risk node-negative breast cancer. An intergroup study. N Engl J Med 320:485-490, 1989Google Scholar
  112. 112.
    Frebour T, Barbier N, Kassel J, Ng Y-S, Romero P, Friend S: A functional screen for germ line p53 mutations based on transcriptional activation. Cancer Res 52:6976-6978, 1992Google Scholar
  113. 113.
    Friend S, Iggo R, Ishioka C, Fitzgerald M, Hoover I, O'Neill E, Frebourg T: Overcoming complexities in genetic screening for cancer susceptibility. Cold Spring Harbor Symposia on Quantitative Biology 59:673-676, 1994Google Scholar
  114. 114.
    Goffeau A: Molecular fish on chips. Nature 385:202-203, 1997Google Scholar
  115. 115.
    Waldman T, Kinzler K, Vogelstein B: p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 55:5187-5190, 1995Google Scholar
  116. 116.
    Xiong Y, Hannon G, Zhang H, Casso D, Kobayashi R, Beach D: p21 is a universal inhibitor of cyclin kinases. Nature 366:701-704, 1993Google Scholar
  117. 117.
    Zhang H, Ziong Y, Beach D: Proliferating cell nuclear antigen and p21 are components of multiple cell cycle kinase complexes. Mol Biol Cell 4:897-906, 1993Google Scholar
  118. 118.
    Isaacs J, Chiao C, Merrick B, Selkirk J, Barrett J, Weissman B: p53-dependent p21 induction following γ-irradiation without concomitant p53 induction in a human peripheral neuroepithelioma cell line. Cancer Res 57:2986-2992, 1997Google Scholar
  119. 119.
    Zeng YX, El-Deiry WS: Regulation of p21WAF1/CIP1 expression by p53-independent pathways. Oncogene 12:1557-1564, 1996Google Scholar
  120. 120.
    Loignon M, Fetni R, Gordon A, Drobetsky E: A p53-independent pathway for induction of p21WAF1/CIP1 and concomitant G1 arrest in UV-irradiated human skin fibroblasts. Cancer Res 57:3390-3394, 1997Google Scholar
  121. 121.
    Diab S, Yu Y, Hilsenbeck S, Allred D, Elledge R: WAF1/CIP1 protein expression in human breast tumors. Breast Cancer Res Treat 43:99-103, 1997Google Scholar
  122. 122.
    Caffo O, Doglioni C, Veronese S, Bonzanini M, Marchetti A, Buttitta F, Fina P, Leek R, Morelli L, Dalla Palma P, Harris A, Barbareschi M: Prognostic value of p21WAF1 and p53 expression in breast carcinoma: An immunohistochemical study in 261 patients with long-term follow-up. Clin Cancer Res 2:1591-1599, 1996Google Scholar
  123. 123.
    Johnson E, Davidson A, Hostetter R, Cook L, Thomas E, Quinlan D: The expression of Waf-1 in node-negative infiltrating ductal breast carcinoma. Proc Am Assoc Cancer Res 37:3905, 1996Google Scholar
  124. 124.
    Ellis P, Lonning P, Borresen-Dale A, Aas T, Geisler S, Akslen L, Slater I, Smith I, Dowsett M: Absence of p21 expression is associated with abnormal p53 in human breast carcinomas. Br J Cancer 76:480-485, 1997Google Scholar
  125. 125.
    Jiang M, Shao Z, Wu J, Lu J, Yu L, Yuan J, Han Q, Shen Z, Fontana J: p21/waf1/cip1 and mdm-2 expression in breast carcinoma patients as related to prognosis. Int J Cancer (Pred. Oncol.) 74:529-534, 1997Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Richard M. Elledge
  • D. Craig Allred

There are no affiliations available

Personalised recommendations