Natural Language & Linguistic Theory

, Volume 17, Issue 2, pp 303–337 | Cite as

Variation in Finnish Vowel Harmony: An OT Account

  • Catherine O. Ringen
  • Orvokki Heinämäki
Article

Abstract

This paper presents data on vowel harmony with disharmonic roots in Finnish which show that when the last harmonic vowel in a disharmonic root is back, in almost all cases the only possible harmonic suffix vowel is back, but when the last harmonic vowel is front, there is usually variation in suffix vowel choice that seems to be influenced by several factors, including sonority and stress. These data, which cannot easily be accounted for in rule-based theories, can be accounted for in Optimality Theory. A highly ranked alignment constraint accounts for harmony with native roots and loans in which the last harmonic vowel is back. Unranked constraints, which tie suffix vowel choice to stress and sonority, as well as alignment requirements, determine suffix vowel quality for the remainder of forms. Variation is seen to be a function of the relative frequency with which a particular suffix vowel is designated as optimal by the different possible rankings of the unranked constraints.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, Lloyd: 1980, ‘Using Asymmetrical and Gradient Data in the Study of Vowel Harmony’, in Robert M. Vago (ed.), 1980, pp. 271–340.Google Scholar
  2. Anttila, Arto: 1997, ‘Deriving Variation from Grammar’, in Frans Hinskens, Roeland van Hout and Leo Wetzels (eds.), Variation, Change and Phonological Theory, John Benjamins, Amsterdam, pp. 35–68.Google Scholar
  3. Beckman, Jill: 1997, ‘Positional Faithfulness, Positional Neutralization, and Shona Vowel Harmony’, Phonology 14(1), 1–46.Google Scholar
  4. Beckman, Jill: 1998, Positional Faithfulness, unpublished Ph.D. dissertation, University of Massachusetts.Google Scholar
  5. Beckman, Jill, Laura Walsh Dickey, and Suzanne Urbanczyk (eds.): 1995, UMOP 18: Papers in Optimality Theory, GLSA, Amherst, Massachusetts.Google Scholar
  6. Bladon, R. A. W. and Björn Lindblom: 1981, ‘Modeling the Judgment of Vowel Quality Differences’, JASA 69, 1414–1422.Google Scholar
  7. Campbell, Lyle: 1980, ‘The Psychological and Sociological Reality of Finnish Vowel Harmony’, in R. Vago (ed.): 1980, pp. 245–269.Google Scholar
  8. Campbell, Lyle: 1981, ‘Generative Phonology vs. Finnish Phonology: Retrospect and Prospect’, in D. L. Goyvaerts (ed.): 1981, pp. 147–182.Google Scholar
  9. Ellison, T. Mark: 1995, ‘Phonological Derivation in Optimality Theory’, unpublished manuscript, University of Edinburgh.Google Scholar
  10. Fujimura, Osamu (ed.): 1973, Three Dimensions of Linguistic Theory, TEC Corp., Tokyo.Google Scholar
  11. Goldsmith, John: 1985, ‘Vowel Harmony in Khalkha Mongolian, Yaka, Finnish, and Hungarian’, Phonology Yearbook 2, 253–275.Google Scholar
  12. Goyvaerts, D. L. (ed.): 1981, Phonology in the 1980s, Story-Scientia, Ghent.Google Scholar
  13. Halle, Morris and Jean-Roger Vergnaud: 1981, ‘Harmony Processes’, in W. Klein and W. Levelt (eds.), Crossing the Boundaries in Linguistics, Reidel, Dordrecht, pp. 1–22.Google Scholar
  14. Harms, Robert: 1982, ‘What Helmholtz Knew about Neutral Vowels’, Texas Linguistic Forum 19, 67–88.Google Scholar
  15. Holden, Kyril: 1972, Loan-words and Phonological Systems, unpublished Ph.D. dissertation, University of Texas.Google Scholar
  16. Ikola, Osmo 1971, Nykysuomen käsikirja (A Handbook of Contemporary Finnish), second edition, Weilin and Göös, Helsinki.Google Scholar
  17. Ikola, Osmo (ed.) 1986, Nykysuomen käsikirja (A Handbook of Contemporary Finnish) second, revised edition, Weilin and Göös, Espoo.Google Scholar
  18. Itô, Junko and Armin Mester: 1995, ‘Core and Periphery Structure of the Lexicon and Constraints on Reranking’, in Beckman et al. (eds.): 1995, pp. 181–209.Google Scholar
  19. Itô, Junko, Armin Mester, and Jaye Padgett: 1995, ‘Licensing and Underspecification in Optimality Theory’, Linguistic Inquiry 26, 571–613.Google Scholar
  20. Kiparsky, Paul: 1973, ‘Phonological Representations’, in O. Fujimura (ed.), pp. 3–136.Google Scholar
  21. Kiparsky, Paul: 1981, ‘Vowel Harmony’, unpublished manuscript, MIT.Google Scholar
  22. Kiparsky, Paul: 1993, ‘Variable Rules’, paper presented at The First Rutgers Optimality Workshop (ROW#1), October, Rutgers University, New Brunswick, New Jersey.Google Scholar
  23. Kirchner, R.: 1993, ‘Turkish Vowel Disharmony in Optimality Theory’, paper presented at The First Rutgers Optimality Workshop (ROW#1), October, Rutgers University, New Brunswick, New Jersey.Google Scholar
  24. Kirchner, Robert: 1997, ‘Contrastiveness and Faithfulness’, Phonology 14(1), 83–111.Google Scholar
  25. Kontra, Miklós and Catherine O. Ringen: 1986, ‘Vowel Harmony: The Evidence from Loanwords’, Ural-Altaic Yearbook, 1–14.Google Scholar
  26. Kontra, Miklós and Catherine O. Ringen: 1987, ‘Stress and Harmony in Hungarian Loadwords’, in Károly Rédei (ed.), Studien zur Phonologie und Morphonologie der uralischen Sprachen, Verband der Wissenschafliche Gesellschafte Österreichs, Vienna, pp. 81–96.Google Scholar
  27. Kontra, Miklós, Catherine O. Ringen, and Joseph P. Stemberger: 1991, ‘The Effect of Context on Suffix Yowel Choice in Hungarian Vowel Harmony’, in Werner Bahner, Joachim Schildt and Dieter Viehweger (eds.), Proceedings of the Fourteenth International Congress of Linguists, vol. 1, Akademie-verlag, Berlin, pp. 450–453.Google Scholar
  28. Levomäki, Mauri: 1972, ‘Vierasperäisten sanojen suffiksaali vokaalisointu’, (Suffixal vowel harmony in words of foreign origin), Virittäjä 76, 254–62.Google Scholar
  29. McCarthy, John and Alan Prince: 1993a, Prosodic Morphology I: Constraint Interaction and Satisfaction, unpublished manuscript, University of Massachusetts and Rutgers University.Google Scholar
  30. McCarthy, John and Alan Prince: 1993b, ‘Generalized Alignment‘, in Geert Booij and Jaap van Marle (eds.), Yearbook of Morphology, pp. 79–154.Google Scholar
  31. McCarthy, John and Alan Prince: 1995, ‘Faithfulness and Reduplicative Identity’, in Beckman et al., 1995, pp. 249–384.Google Scholar
  32. Penttilä, Aarni: 1963, Suomen kielioppi (Finnish grammar), second, revised edition, WSOY, Porvoo, Finland.Google Scholar
  33. Prince, Alan and Paul Smolensky: 1993, Optimality Theory: Constraint Interaction in Generative Grammar, Technical Report #2 of the Rutgers Center for Cognitive Science, Rutgers University, New Brunswick, New Jersey.Google Scholar
  34. Ringen, Catherine O.: 1988a, ‘Transparency in Hungarian Vowel Harmony’, Phonology 5, 327–342.Google Scholar
  35. Ringen, Catherine O.: 1988b, Vowel Harmony: Theoretical Implications, Ph.D. dissertation, Indiana University, Bloomington, Indiana, 1975. Published by Garland, New York, 1988.Google Scholar
  36. Ringen, Catherine O. and Miklós Kontra: 1989, ‘Hungarian Neutral Vowels’, Lingua 78, 181–191.Google Scholar
  37. Ringen, Catherine O. and Robert M. Vago: 1995, ‘A Constraint Based Analysis of Hungarian Vowel Harmony’, in István Kenesei (ed.), Approaches to Hungarian, vol. 5.Google Scholar
  38. Ringen, Catherine O. and Robert M. Vago: 1998, ‘Hungarian Vowel Harmony in Optimality Theory’, Phonology 15(3).Google Scholar
  39. Saarimaa, E. A.: 1971, Kielenopas (Language guide), eighth ed. WSOY, Helsinki.Google Scholar
  40. Sadeniemi, Matti: 1946, ‘Marttyyreja vai marttyyrejä? (Marttyyreja or marttyyrejä?) Virittäjä 50, 79–80.Google Scholar
  41. Sadeniemi, Matti: 1949, Metriikkamme perusteet (Fundamentals of Finnish metrics), Otava, Helsinki.Google Scholar
  42. Selkirk, Elisabeth: 1994, ‘Optimality Theory and Featural Phenomena’, lecture notes, Linguistics 730, University of Massachusetts, Amberst.Google Scholar
  43. Smolensky, Paul: 1993, ‘Harmony, Markedness, and Phonological Activity’, paper presented at The First Rutgers Optimality Workshop (ROW#1), October, Rutgers University, New Brunswick, New Jersey (ROA 87-0000, ROA 37-000).Google Scholar
  44. Steriade, Donca: 1987, ‘Redundant Values’, in Anna Bosch, Barbara Need, and Eric Schiller (eds.), CLS 23, Chicago Linguistics Society, Chicago, pp. 339–362.Google Scholar
  45. Ultan, Russell: 1973, ‘Some Reflections on Vowel Harmony’, Working Papers on Language Universals 12, 37–67.Google Scholar
  46. Vago, Robert M. (ed.): 1980, Issues in Vowel Harmony, John Benjamins, Amsterdam.Google Scholar
  47. Vago Robert M.: 1988, ‘Vowel Harmony in Finnish Word Games’, in Harry van der Hulst and Norval Smith (eds.), Features, Segmental Structure and Harmony Processes, Part II, Foris, Dordrecht, pp. 185–205.Google Scholar
  48. Välimaa-Blum, Ritta: 1987, ‘Finnish Vowel Harmony as a Prescriptive and Descriptive Rule: An Autosegmental Account’, in A. Miller and Joyce Powers (eds.), 4th ESCOL 1987, The Ohio State University, Columbus, pp. 511–522.Google Scholar
  49. Zoll, Cheryl: 1996, Parsing Below the Segment in a Constraint Based Framework, unpublished Ph.D. dissertation, U.C. Berkeley.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Catherine O. Ringen
    • 1
  • Orvokki Heinämäki
    • 2
  1. 1.Department of LinguisticsUniversity of IowaIowa City
  2. 2.Department of LinguisticsUniversity of HelsinkiFinland

Personalised recommendations