Advertisement

Acta Applicandae Mathematica

, Volume 56, Issue 1, pp 1–98 | Cite as

The Devil's Invention: Asymptotic, Superasymptotic and Hyperasymptotic Series

  • John P. Boyd
Article

Abstract

Singular perturbation methods, such as the method of multiple scales and the method of matched asymptotic expansions, give series in a small parameter ε which are asymptotic but (usually) divergent. In this survey, we use a plethora of examples to illustrate the cause of the divergence, and explain how this knowledge can be exploited to generate a 'hyperasymptotic' approximation. This adds a second asymptotic expansion, with different scaling assumptions about the size of various terms in the problem, to achieve a minimum error much smaller than the best possible with the original asymptotic series. (This rescale-and-add process can be repeated further.) Weakly nonlocal solitary waves are used as an illustration.

perturbation methods asymptotic hyperasymptotic exponential smallness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackerberg, R. C. and O'Malley, R. E., Jr.: Boundary layer problems exhibiting resonance, Stud. Appl. Math. 49 (1970), 277–295. Classical paper illustrating the failure of standard matched asymptotics; this can be resolved by incorporating exponentially small terms in the analysis (MacGillivray, 1997).Google Scholar
  2. 2.
    Adamson, T. C., Jr. and Richey, G. K.: Unsteady transonic flows with shock waves in two-dimensional channels, J. Fluid Mech. 60 (1973), 363–382. Shows the key role of exponentially small terms.Google Scholar
  3. 3.
    Airey, J. R.: The “converging factor” in asymptotic series and the calculation of Bessel, Laguerre and other functions, Philos. Magazine 24 (1937), 521–552. Hyperasymptotic approximation to some special functions for large |x|.Google Scholar
  4. 4.
    Akylas, T. R. and Grimshaw, R. H. J.: Solitary internal waves with oscillatory tails, J. Fluid Mech. 242 (1992), 279–298. Theory agrees with observations of Farmer and Smith (1980).Google Scholar
  5. 5.
    Akylas, T. R. and Yang, T.-S.: On short-scale oscillatory tails of long-wave disturbances, Stud. Appl. Math. 94 (1995), 1–20. Nonlocal solitary waves; perturbation theory in Fourier space.Google Scholar
  6. 6.
    Alvarez, G.: Coupling-constant behavior of the resonances of the cubic anharmonic oscillator, Phys. Rev. A 37 (1988), 4079–4083. Beyond-all-orders perturbation theory in quantum mechanics.Google Scholar
  7. 7.
    Arnold, V. I.: Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1978. Quote about why series diverge: p. 395.Google Scholar
  8. 8.
    Arteca, G. A., Fernandez, F. M. and Castro, E. A.: Large Order Perturbation Theory and Summation Methods in Quantum Mechanics, Springer-Verlag, New York, 1990, p. 642; beyond-all-orders perturbation theory.Google Scholar
  9. 9.
    Baker, G. A., Jr. and Graves-Morris, P.: Pade Approximants, Cambridge University Press, New York, 1996.Google Scholar
  10. 10.
    Baker, G. A., Jr., Oitmaa, J. and Velgakis, M. J.: Series analysis of multivalued functions, Phys. Rev. A 38 (1988), 5316–5331. Generalization of Padé approximants; the power series for a function u(z), known only through its series, is used to define the polynomial coefficients of a differential equation, whose solution is then used as an approximation to u.Google Scholar
  11. 11.
    Balian, R., Parisi, G. and Voros, A.: Quartic oscillator, in: S. Albeverio, P. Combe, R. Hoegh-Krohn, G. Rideau, M. Siruge-Collin, M. Sirugue and R. Stora (eds), Feynman Path Integrals, Lecture Notes in Phys. 106, Springer-Verlag, New York, 1979, pp. 337–360.Google Scholar
  12. 12.
    Balser, W.: A different characterization of multisummable power series, Analysis 12 (1992), 57–65.Google Scholar
  13. 13.
    Balser, W.: Summation of formal power series through iterated Laplace integrals, Math. Scand. 70 (1992), 161–171.Google Scholar
  14. 14.
    Balser, W.: Addendum to my paper: A different characterization of multisummable power series, Analysis 13 (1993), 317–319.Google Scholar
  15. 15.
    Balser, W.: From Divergent Power Series to Analytic Functions, Lecture Notes in Math. 1582, Springer-Verlag, New York, 1994, p. 100; good presentation of Gevrey order and asymptotics and multisummability.Google Scholar
  16. 16.
    Balser, W., Braaksma, B. L. J., Ramis, J.-P. and Sibuya, Y.: Multisummability of formal power series of linear ordinary differential equations, Asymptotic Anal. 5 (1991), 27–45.Google Scholar
  17. 17.
    Balser, W. and Tovbis, A.: Multisummability of iterated integrals, Asymptotic Anal. 7 (1992), 121–127.Google Scholar
  18. 18.
    Benassi, L., Grecchi, V., Harrell, E. and Simon, B.: Bender-Wu formula and the Stark effect in hydrogen, Phys. Rev. Lett. 42 (1979), 704–707. Exponentially small corrections in quantum mechanics.Google Scholar
  19. 19.
    Bender, C. M. and Orszag, S. A.: Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York, 1978, p. 594.Google Scholar
  20. 20.
    Bender, C. M. and Wu, T. T.: Anharmonic oscillator, Phys. Rev. 184 (1969), 1231–1260.Google Scholar
  21. 21.
    Bender, C.M. and Wu, T. T.: Anharmonic oscillator. II. A study of perturbation theory in large order, Phys. Rev. D 7 (1973), 1620–1636.Google Scholar
  22. 22.
    Benilov, E., Grimshaw, R. H. and Kuznetsova, E.: The generation of radiating waves in a singularly perturbed Korteweg-de Vries equation, Physica D 69 (1993), 270–276.Google Scholar
  23. 23.
    Berman, A. S.: Laminar flow in channel with porous walls, J. Appl. Phys. 24 (1953), 1232–1235. Earliest paper on an ODE (Berman-Robinson-Terrill problem) where exponentially small corrections are important.Google Scholar
  24. 24.
    Berry, M. V.: Stokes' phenomenon; smoothing a Victorian discontinuity, Publ. Math. IHES 68 (1989), 211–221.Google Scholar
  25. 25.
    Berry, M. V.: Uniform asymptotic smoothing of Stokes's discontinuities, Proc. Roy. Soc. London A 422 (1989), 7–21.Google Scholar
  26. 26.
    Berry, M. V.: Waves near Stokes lines, Proc. Roy. Soc. London A 427 (1990), 265–280.Google Scholar
  27. 27.
    Berry, M. V.: Histories of adiabatic quantum transitions, Proc. Roy. Soc. London A 429 (1990), 61–72.Google Scholar
  28. 28.
    Berry, M. V.: Infinitely many Stokes smoothings in the Gamma function, Proc. Roy. Soc. London A 434 (1991), 465–472.Google Scholar
  29. 29.
    Berry, M. V.: Stokes phenomenon for superfactorial asymptotic series, Proc. Roy. Soc. London A 435 (1991), 437–444.Google Scholar
  30. 30.
    Berry, M. V.: Asymptotics, superasymptotics, hyperasymptotics, in: H. Segur, S. Tanveer and H. Levine (eds), Asymptotics Beyond All Orders, Plenum, Amsterdam, 1991, pp. 1–14.Google Scholar
  31. 31.
    Berry, M. V.: Faster than Fourier, in: J. S. Auandan and J. L. Safko (eds), Celebration of the 60th Birthday of Yakir Aharonov, World Scientific, Singapore, 1994.Google Scholar
  32. 32.
    Berry, M. V.: Evanescent and real waves in quantum billiards and Gaussian beams, J. Phys. A 27 (1994), L391–L398.Google Scholar
  33. 33.
    Berry, M. V.: Asymptotics, singularities and the reduction of theories, in: D. Prawitz, B. Skyrms and D. Westerstahl (eds), Logic, Methodology and Philosophy of Science IX, Elsevier, Amsterdam, 1994, pp. 597–607.Google Scholar
  34. 34.
    Berry, M. V.: Riemann-Siegel expansion for the zeta function: High orders and remainders, Proc. Roy. Soc. London A 450 (1995), 439–462. Beyond all orders asymptotics.Google Scholar
  35. 35.
    Berry, M. V. and Howls, C. J.: Hyperasymptotics, Proc. Roy. Soc. London A 430 (1990), 653–668.Google Scholar
  36. 36.
    Berry, M. V. and Howls, C. J.: Stokes surfaces of diffraction catastrophes with codimension three, Nonlinearity 3 (1990), 281–291.Google Scholar
  37. 37.
    Berry, M. V. and Howls, C. J.: Hyperasymptotics for integrals with saddles, Proc. Roy. Soc. London A 434 (1991), 657–675.Google Scholar
  38. 38.
    Berry, M. V. and Howls, C. J.: Unfolding the high orders of asymptotic expansions with coalescing saddles: Singularity theory, crossover and duality, Proc. Roy. Soc. London A 443 (1993), 107–126.Google Scholar
  39. 39.
    Berry, M. V. and Howls, C. J.: Infinity interpreted, Physics World (1993), 35–39.Google Scholar
  40. 40.
    Berry, M. V. and Howls, C. J.: Overlapping Stokes smoothings: Survival of the error function and canonical catastrophe integrals, Proc. Roy. Soc. London A 444 (1994), 201–216.Google Scholar
  41. 41.
    Berry, M. V. and Howls, C. J.: High orders of the Weyl expansion for quantum billiards: Resurgence of periodic orbits, and the Stokes phenomenon, Proc. Roy. Soc. London A 447 (1994), 527–555.Google Scholar
  42. 42.
    Berry, M. V. and Lim, R.: Universal transition prefactors derived by superadiabatic renormalization, J. Phys. A 26 (1993), 4737–4747.Google Scholar
  43. 43.
    Bhattacharyya, K.: Notes on polynomial perturbation problems, Chem. Phys. Lett. 80 (1981), 257–261.Google Scholar
  44. 44.
    Bhattacharyya, K. and Bhattacharyya, S. P.: The sign-change argument revisited, Chem. Phys. Lett. 76 (1980), 117–119. Criterion for divergence of asymptotic series.Google Scholar
  45. 45.
    Bhattacharyya, K. and Bhattacharyya, S. P.: Reply to “another attack on the sign-change argument”, Chem. Phys. Lett. 80 (1981), 604–605.Google Scholar
  46. 46.
    Boasman, P. A. and Keating, J. P.: Semiclassical asymptotics of perturbed cat maps, Proc. Roy. Soc. London A 449 (1995), 625–653. Shows that the optimal truncation of the semiclassical expansion is accurate to within an error which is an exponential function of 1/ħ. Stokes phenomenon, Borel resummation, and a universal approximation to the late terms are used beyond the superasymptotic approximation.Google Scholar
  47. 47.
    Boyd, J. P.: A Chebyshev polynomial method for computing analytic solutions to eigenvalue problems with application to the anharmonic oscillator, J. Math. Phys. 19 (1978), 1445–1456.Google Scholar
  48. 48.
    Boyd, J. P.: The nonlinear equatorial Kelvin wave, J. Phys. Oceanogr. 10 (1980), 1–11.Google Scholar
  49. 49.
    Boyd, J. P.: The rate of convergence of Chebyshev polynomials for functions which have asymptotic power series about one endpoint, Math. Comput. 37 (1981), 189–196.Google Scholar
  50. 50.
    Boyd, J. P.: The optimization of covergence for Chebyshev polynomial methods in an unbounded domain, J. Comput. Phys. 45 (1982), 43–79. Infinite and semi-infinite intervals; guidelines for choosing the map parameter or domain size L.Google Scholar
  51. 51.
    Boyd, J. P.: A Chebyshev polynomial rate-of-covergence theorem for Stieltjes functions, Math. Comput. 39 (1982), 201–206. Typo: In (24), the rightmost expression should be 1 − (r + ε)/2.Google Scholar
  52. 52.
    Boyd, J. P.: The asymptotic coefficients of Hermite series, J. Comput. Phys. 54 (1984), 382–410.Google Scholar
  53. 53.
    Boyd, J. P.: Spectral methods using rational basis functions on an infinite interval, J. Comput. Phys. 69 (1987), 112–142.Google Scholar
  54. 54.
    Boyd, J. P.: Orthogonal rational functions on a semi-infinite interval, J. Comput. Phys. 70 (1987), 63–88.Google Scholar
  55. 55.
    Boyd, J. P.: Chebyshev and Fourier Spectral Methods, Springer-Verlag, New York, 1989, p. 792.Google Scholar
  56. 56.
    Boyd, J. P.: New directions in solitons and nonlinear periodic waves: Polycnoidal waves, imbricated solitons, weakly non-local solitary waves and numerical boundary value algorithms, in: T.-Y. Wu and J. W. Hutchinson (eds), Advances in Applied Mechanics, Adv. in Appl. Mech. 27, Academic Press, New York, 1989, pp. 1–82.Google Scholar
  57. 57.
    Boyd, J. P.: Non-local equatorial solitary waves, in: J. C. J. Nihoul and B. M. Jamart (eds), Mesoscale/Synoptic Coherent Structures in Geophysical Turbulence: Proc. 20th Liége Coll. on Hydrodynamics, Elsevier, Amsterdam, 1989, pp. 103–112. Typo: In (4.1b), 0.8266 should be 1.6532.Google Scholar
  58. 58.
    Boyd, J. P.: A numerical calculation of a weakly non-local solitary wave: the ψ 4 breather, Nonlinearity 3 (1990), pp. 177–195. The eigenfunction calculation (5.15, etc.) has some typographical errors corrected in Chapter 12 of Boyd (1998).Google Scholar
  59. 59.
    Boyd, J. P.: The envelope of the error for Chebyshev and Fourier interpolation, J. Sci. Comput. 5 (1990), 311–363.Google Scholar
  60. 60.
    Boyd, J. P.: A Chebyshev/radiation function pseudospectral method for wave scattering, Computers in Physics 4 (1990), 83–85. Numerical calculation of exponentially small reflection.Google Scholar
  61. 61.
    Boyd, J. P.: A comparison of numerical and analytical methods for the reduced wave equation with multiple spatial scales, Appl. Numer. Math. 7 (1991), 453–479. Study of u xx ± u x = f(εx). Typo: ε 2n factor should be omitted from Equation (4.3).Google Scholar
  62. 62.
    Boyd, J. P.: Weakly non-local solitons for capillary-gravity waves: Fifth-degree Korteweg-de Vries equation, Physica D 48 (1991), 129–146. Typo: at the beginning of Section 5, 'Newton-Kantorovich (5.1)' should read 'Newton-Kantorovich (3.2)'. Also, in the caption to Figure 12, '500,000' should be '70,000'.Google Scholar
  63. 63.
    Boyd, J. P.: Chebyshev and Legendre spectral methods in algebraic manipulation languages, J. Symbolic Comput. 16 (1993), 377–399.Google Scholar
  64. 64.
    Boyd, J. P.: The rate of convergence of Fourier coefficients for entire functions of infinite order with application to the Weideman-Cloot sinh-mapping for pseudospectral computations on an infinite interval, J. Comput. Phys. 110 (1994), 360–372.Google Scholar
  65. 65.
    Boyd, J. P.: The slow manifold of a five mode model, J. Atmos. Sci. 51 (1994), 1057–1064.Google Scholar
  66. 66.
    Boyd, J. P.: Time-marching on the slow manifold: The relationship between the nonlinear Galerkin method and implicit timestepping algorithms, Appl. Math. Lett. 7 (1994), 95–99.Google Scholar
  67. 67.
    Boyd, J. P.: Weakly nonlocal envelope solitary waves: Numerical calculations for the Klein-Gordon (Ψ 4) equation, Wave Motion 21 (1995), 311–330.Google Scholar
  68. 68.
    Boyd, J. P.: A hyperasymptotic perturbative method for computing the radiation coefficient for weakly nonlocal solitary waves, J. Comput. Phys. 120 (1995), 15–32.Google Scholar
  69. 69.
    Boyd, J. P.: Eight definitions of the slow manifold: Seiches, pseudoseiches and exponential smallness, Dyn. Atmos. Oceans 22 (1995), 49–75.Google Scholar
  70. 70.
    Boyd, J. P.: A lag-averaged generalization of Euler's method for accelerating series, Appl. Math. Comput. 72 (1995), 146–166.Google Scholar
  71. 71.
    Boyd, J. P.: Multiple precision pseudospectral computations of the radiation coefficient for weakly nonlocal solitary waves: Fifth-order Korteweg-de Vries equation, Computers in Physics 9 (1995), 324–334.Google Scholar
  72. 72.
    Boyd, J. P.: Weakly Nonlocal Solitary Waves and Beyond-All-Orders Asymptotics: Generalized Solitons and Hyperasymptotic Perturbation Theory, Math. Appl. 442, Kluwer Acad. Publ., Dordrecht, 1998, p. 608.Google Scholar
  73. 73.
    Boyd, J. P.: Chebyshev and Fourier Spectral Methods, Dover, New York, 1999. Second edition of Boyd (1989a), in press.Google Scholar
  74. 74.
    Boyd, J. P. and Christidis, Z. D.: Low wavenumber instability on the equatorial beta-plane, Geophys. Res. Lett. 9 (1982), 769–772. Growth rate is exponentially in 1/ε where ε is the shear strength.Google Scholar
  75. 75.
    Boyd, J. P. and Christidis, Z. D.: Instability on the equatorial beta-plane, in: J. Nihoul (ed.), Hydrodynamics of the Equatorial Ocean, Elsevier, Amsterdam, 1983, pp. 339–351.Google Scholar
  76. 76.
    Boyd, J. P. and Natarov, A.: A Sturm-Liouville eigenproblem of the fourth kind: A critical latitude with equatorial trapping, Stud. Appl. Math. 101 (1998), 433–455.Google Scholar
  77. 77.
    Boyd, W. G. C.: Stieltjes transforms and the Stokes phenomenon, Proc. Roy. Soc. London A 429 (1990), 227–246.Google Scholar
  78. 78.
    Boyd, W. G. C.: Error bounds for the method of steepest descents, Proc. Roy. Soc. London A 440 (1993), 493–516.Google Scholar
  79. 79.
    Boyd, W. G. C.: Gamma function asymptotics by an extension of the method of steepest descents, Proc. Roy. Soc. London A 447 (1993), 609–630.Google Scholar
  80. 80.
    Boyd, W. G. C.: Steepest-descent integral representations for dominant solutions of linear second-order differential equations, Methods Appl. Anal. 3 (1996), 174–202.Google Scholar
  81. 81.
    Braaksma, B. L. J.: Multisummability and Stokes multipliers of linear meromorphic differential equations, Ann. Inst. Fourier (Grenoble) 92 (1991), 45–75.Google Scholar
  82. 82.
    Braaksma, B. L. J.: Multisummability of formal power-series solutions of nonlinear meromorphic differential equations, Ann. Inst. Fourier (Grenoble) 42 (1992), 517–540. Proves a theorem of Écalle that formal power series of nonlinear meromorphic differential equations are multisummable.Google Scholar
  83. 83.
    Braaksma, B. L. J. (ed.): The Stokes Phenomenon and Hilbert's Sixteenth Problem: Groningen, The Netherlands, 31 May-3 June 1995, World Scientific, Singapore, 1996.Google Scholar
  84. 84.
    Branis, S. V., Martin, O. and Birman, J. L.: Self-induced transparency selects discrete velocities for solitary-wave solutions, Phys. Rev. A 43 (1991), 1549–1563. Nonlocal envelope solitons.Google Scholar
  85. 85.
    Bulakh, B. M.: On higher approximations in the boundary-layer theory, J. Appl. Math. Mech. 28 (1964), 675–681.Google Scholar
  86. 86.
    Byatt-Smith, J. G. B.: On solutions of ordinary differential equations arising from a model of crystal growth, Stud. Appl. Math. 89 (1993), 167–187.Google Scholar
  87. 87.
    Byatt-Smith, J. G. B.: Formulation and summation of hyperasymptotic expansions obtained from integrals, European J. Appl. Math. 9 (1998), 159–185.Google Scholar
  88. 88.
    Byatt-Smith, J. G. B. and Davie, A. M.: Exponentially small oscillations in the solution of an ordinary differential equation, Proc. Roy. Soc. Edinburgh A 114 (1990), 243.Google Scholar
  89. 89.
    Byatt-Smith, J. G. B. and Davie, A. M.: Exponentially small oscillations in the solution of an ordinary differential equation, in: H. Segur, S. Tanveer and H. Levine (eds), Asymptotics Beyond All Orders, Plenum, Amsterdam, 1991, pp. 223–240.Google Scholar
  90. 90.
    Candelpergher, B., Nosmas, J. C. and Pham, F.: Introduction to Écalle alien calculus, Ann. Inst. Fourier (Grenoble) 43 (1993), 201–224. Review. The “alien calculus” is a systematic theory for resurgence and Borel summability to generate hyperasymptotic approximation. Written in French.Google Scholar
  91. 91.
    Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zang, T. A.: Spectral Methods for Fluid Dynamics, Springer-Verlag, New York, 1987.Google Scholar
  92. 92.
    Carr, J.: Slowly varying solutions of a nonlinear partial differential equation, in: D. S. Broomhead and A. Iserles (eds), The Dynamics of Numerics and the Numerics of Dynamics, Oxford University Press, Oxford, 1992, pp. 23–30.Google Scholar
  93. 93.
    Carr, J. and Pego, R. L.: Metastable patterns in solutions of u t = ε 2 u xxf(u), Comm. Pure Appl. Math. 42 (1989), 523–576. Merger of fronts on an exponentially slow time scale.Google Scholar
  94. 94.
    Chang, Y.-H.: Proof of an asymptotic symmetry of the rapidly forced pendulum, in: H. Segur, S. Tanveer and H. Levine (eds), Asymptotics Beyond All Orders, Plenum, Amsterdam, 1991, pp. 213–221.Google Scholar
  95. 95.
    Chapman, S. J.: On the non-universality of the error function in the smoothing of Stokes discontinuities, Proc. Roy. Soc. London A 452 (1996), 2225–2230.Google Scholar
  96. 96.
    Chapman, S. J., King, J. R. and Adams, K. L.: Exponential asymptotics and Stokes lines in nonlinear ordinary differential equations, Proc. Roy. Soc. London A (1998). To appear.Google Scholar
  97. 97.
    Chen, J., Fisher, M. E. and Nickel, B. G.: Unbiased estimation of corrections to scaling by partial differential approximants, Phys. Rev. Lett. 48 (1982), 630–634. Generalization of Padé approximants.Google Scholar
  98. 98.
    Chester, W. and Breach, D. R.: On the flow past a sphere at low Reynolds number, J. Fluid Mech. 37 (1969), 751–760. Log-and-power series.Google Scholar
  99. 99.
    Ciasullo, L. M. and Cochran, J. A.: Accelerating the convergence of Chebyshev series, in: R. Wong (ed.), Asymptotic and Computational Analysis, Marcel Dekker, New York, 1990, pp. 95–136.Google Scholar
  100. 100.
    Cizek, J., Damburg, R. J., Graffi, S., Grecchi, V., II, E. M. H., Harris, J. G., Nakai, S., Paldus, J., Propin, R. K. and Silverstone, H. J.: 1/R expansion for H 2+: Calculation of exponentially small terms and asymptotics, Phys. Rev. A 33 (1986), 12–54.Google Scholar
  101. 101.
    Cizek, J. and Vrscay, E. R.: Large order perturbation theory in the context of atomic and molecular physics — interdisciplinary aspects, Int. J. Quantum Chem. 21 (1982), 27–68.Google Scholar
  102. 102.
    Cloot, A. and Weideman, J. A. C.: An adaptive algorithm for spectral computations on unbounded domains, J. Comput. Phys. 102 (1992), 398–406.Google Scholar
  103. 103.
    Combescot, R., Dombe, T., Hakim, V. and Pomeau, Y.: Shape selection of Saffman-Taylor fingers, Phys. Rev. Lett. 56 (1986), 2036–2039.Google Scholar
  104. 104.
    Costin, O.: Exponential asymptotics, trans-series and generalized Borel summation for analytic nonlinear rank one systems of ODE's, Internat. Math. Res. Notices 8 (1995), 377–418.Google Scholar
  105. 105.
    Costin, O.: On Borel summation and Stokes phenomenon for nonlinear rank one systems of ODE's, Duke Math. J. 93 (1998), 289–344. Connections with Berry smoothing and Écalle resurgence.Google Scholar
  106. 106.
    Costin, O. and Kruskal, M. D.: Optimal uniform estimates and rigorous asymptotics beyond all orders for a class of ordinary differential equations, Proc. Roy. Soc. London A 452 (1996), 1057–1085.Google Scholar
  107. 107.
    Costin, O. and Kruskal, M. On optimal truncation of divergent series solutions of nonlinear differential systems; Berry smoothing, Proc. Roy. Soc. London A 452 (1998). Submitted. Rigorous proofs of some assertions and conclusions in the smoothing of discontinuities in Stokes phenomenon.Google Scholar
  108. 108.
    Cox, S. M.: Two-dimensional flow of a viscous fluid in a channel with porous walls, J. Fluid Mech. 227 (1991), 1–33. Multiple solutions differing by exponentially small terms.Google Scholar
  109. 109.
    Cox, S. M. and King, A. C.: On the asymptotic solution of a high-order nonlinear ordinary differential equation, Proc. Roy. Soc. London A 453 (1997), 711–728. Berman-Terrill-Robinson problem with good review of earlier work.Google Scholar
  110. 110.
    Darboux, M. G.: Mémoire sur l'approximation des fonctions de très-grands nombres, et sur une classe étendue de développements en série, J. Math. Pures Appl. 4 (1878), 5–56.Google Scholar
  111. 111.
    Darboux, M. G.: Mèmoire sur l'approximation des fonctions de trés-grands nombres, et sur une classe étendue de développements en série, J. Math. Pures Appl. 4 (1878), 377–416.Google Scholar
  112. 112.
    Delabaere, E.: Introduction to the Écalle theory, in: E. Tournier (ed.), Computer Algebra and Differential Equations, London Math. Soc. Lecture Notes Ser. 193, Cambridge University Press, Cambridge, 1994, pp. 59–102.Google Scholar
  113. 113.
    Delabaere, E. and Pham, F.: Unfolding the quartic oscillator, Ann. Phys. 261 (1997), 180–218. Resurgence and “exact WKB methods” confirm the branch structure found by Bender and Wu.Google Scholar
  114. 114.
    Dias, F., Menasce, D. and Vanden-Broeck, J.-M.: Numerical study of capillary-gravity solitary waves, Eur. J. Mech. B Fluids 15 (1996), 17–36.Google Scholar
  115. 115.
    Dickinson, R. E.: Numerical versus analytical methods for a sixth order hypergeometric equation arising in a diffusion-wave theory of the quasi-biennial oscillation QBO. Seminar, 1980.Google Scholar
  116. 116.
    Dingle, R. B.: Asymptotic expansions and converging factors I. General theory and basic converging factors, Proc. Roy. Soc. London A 244 (1958), 456–475.Google Scholar
  117. 117.
    Dingle, R. B.: Asymptotic expansions and converging factors IV. Confluent hypergeometric, parabolic cylinder, modified Bessel and ordinary Bessel functions, Proc. Roy. Soc. London A 249 (1958), 270–283.Google Scholar
  118. 118.
    Dingle, R. B.: Asymptotic Expansions: Their Derivation and Interpretation, Academic Press, New York, 1973. Beyond all orders asymptotics.Google Scholar
  119. 119.
    Dumas, H. S.: Existence and stability of particle channeling in crystals on timescales beyond all orders, in: H. Segur, S. Tanveer and H. Levine (eds), Asymptotics Beyond All Orders, Plenum, Amsterdam, 1991, pp. 267–273.Google Scholar
  120. 120.
    Dumas, H. S.: A Nekhoroshev-like theory of classical particle channeling in perfect crystals, Dynamics Reported 2 (1993), 69–115. Beyond all orders perturbation theory in crystal physics.Google Scholar
  121. 121.
    Dunster, T. M.: Error bounds for exponentially improved asymptotic solutions of ordinary differential equations having irregular singularities of rank one, Methods Appl. Anal. 3 (1996), 109–134.Google Scholar
  122. 122.
    Dyson, F. J.: Divergence of perturbation theory in quantum electrodynamics, Phys. Rev. 85 (1952), 631–632.Google Scholar
  123. 123.
    Écalle, J.: Les fonctions résurgentes, Université de Paris-Sud, Paris, 1981. Three volumes, Earliest systematic development of resurgence theory.Google Scholar
  124. 124.
    Elliott, D.: The evaluation and estimation of the coefficients in the Chebyshev series expansion of a function, Math. Comput. 18 (1964), 274–284. This and the next two papers are classic contributions to the asymptotic theory of Chebyshev coefficients.Google Scholar
  125. 125.
    Elliott, D.: Truncation errors in two Chebyshev series approximations, Math. Comput. 19 (1965), 234–248. Errors in Lagrangian interpolation with a general contour integral representation and an exact analytical formula for 1/(a + x).Google Scholar
  126. 126.
    Elliott, D. and Szekeres, G.: Some estimates of the coefficients in the Chebyshev expansion of a function, Math. Comput. 19 (1965), 25–32. The Chebyshev coefficients are exponentially small in the degree n.Google Scholar
  127. 127.
    Elliott, D. and Tuan, P. D.: Asymptotic coefficients of Fourier coefficients, SIAM J. Math. Anal. 5 (1974), 1–10.Google Scholar
  128. 128.
    Fröman, N.: The energy levels of double-well potentials, Ark. Fysik 32 (1966), 79–96. WKB method for exponentially small splitting of eigenvalue degeneracy.Google Scholar
  129. 129.
    Frost, P. A. and Harper, E. Y.: An extended Padé procedure for constructing global approximations from asymptotic expansions: an explication with examples, SIAM Rev. 18 (1976), 62–91.Google Scholar
  130. 130.
    Fusco, G. and Hale, J. K.: Slow motion manifolds, dormant instability and singular perturbations, J. Dynamics Differential Equations 1 (1989), 75–94. Exponentially slow frontal motion.Google Scholar
  131. 131.
    Germann, T. C. and Kais, S.: Large order dimensional perturbation theory for complex energy eigenvalues, J. Chem. Phys. 99 (1993), 7739–7747. Quadratic Shafer-Padé approximants, applied to compute imaginary part of eigenvalue.Google Scholar
  132. 132.
    Gingold, H. and Hu, J.: Transcendentally small reflection of waves for problems with/without turning points near infinity: A new uniform approach, J. Math. Phys. 32 (1991), 3278–3284. Generalized WBK (Liouville-Green) for above-the-barrier scattering.Google Scholar
  133. 133.
    Grasman, J. and Matkowsky, B. J.: A variational approach to singularly perturbed boundary value problems for ordinary and partial differential equations with turning points, SIAM J. Appl. Math. 32 (1976), 588–597. Resolve the failure of standard matched asymptotics for the problem of Ackerberg and O'Malley (1970) by applying a non-perturbative variational principle; MacGillivray (1997) solves the same problem by incorporating exponentially small terms into matched asymptotics.Google Scholar
  134. 134.
    Grimshaw, R. H. J. and Joshi, N.: Weakly non-local solitary waves in a singularly-perturbed Korteweg-de Vries equation, SIAM J. Appl. Math. 55 (1995), 124–135.Google Scholar
  135. 135.
    Grundy, R. E. and Allen, H. R.: The asymptotic solution of a family of boundary value problems involving exponentially small terms, IMA J. Appl. Math. 53 (1994), 151–168.Google Scholar
  136. 136.
    Hakim, V. and Mallick, K.: Exponentially small splitting of separatrices, matching in the complex plane and Borel summation, Nonlinearity 6 (1993), 57–70. Very readable analysis.Google Scholar
  137. 137.
    Hale, J. K.: Dynamics and numerics, in: D. S. Broomhead and A. Iserles (eds), The Dynamics of Numerics and the Numerics of Dynamics, Oxford University Press, Oxford, 1992, pp. 243–254.Google Scholar
  138. 138.
    Hanson, F. B.: Singular point and exponential analysis, in: R. Wong (ed.), Asymptotic and Computational Analysis, Marcel Dekker, New York, 1990, pp. 211–240.Google Scholar
  139. 139.
    Hardy, G. H.: Divergent Series, Oxford University Press, New York, 1949.Google Scholar
  140. 140.
    Harrell, E. and Simon, B.: The mathematical theory of resonances whose widths are exponentially small, Duke Math. J. 47 (1980), 845.Google Scholar
  141. 141.
    Harrell, E. M.: On the asymptotic rate of eigenvalue degeneracy, Comm. Math. Phys. 60 (1978), 73–95.Google Scholar
  142. 142.
    Harrell, E. M.: Double wells, Comm. Math. Phys. 75 (1980), 239–261. Exponentially small splitting of eigenvalues.Google Scholar
  143. 143.
    Hildebrand, F. H.: Introduction to Numerical Analysis, Dover, New York, 1974. Numerical; asymptotic-but-divergent series in h for errors.Google Scholar
  144. 144.
    Hinton, D. B. and Shaw, J. K.: Absolutely continuous spectra of 2d order differential operators with short and long range potentials, Quart. J. Math. 36 (1985), 183–213. Exponential smallness in eigenvalues.Google Scholar
  145. 145.
    Holmes, P., Marsden, J. and Scheurle, J.: Exponentially small splitting of separatrices with applications to KAM theory and degenerate bifurcations, Contemp. Math. 81 (1988), 214–244.Google Scholar
  146. 146.
    Hong, D. C. and Langer, J. S.: Analytic theory of the selection mechanism in the Saffman-Taylor problem, Phys. Rev. Lett. 56 (1986), 2032–2035.Google Scholar
  147. 147.
    Howls, C. J.: Hyperasymptotics for multidimensional integrals, exact remainder terms and the global connection problem, Proc. Roy. Soc. London A 453 (1997), 2271–2294.Google Scholar
  148. 148.
    Howls, C. J. and Trasler, S. A.: Weyl's wedges, J. Phys. A: Math. Gen. 31 (1998), 1911–1928. Hyperasymptotics for quantum billiards with nonsmooth boundary.Google Scholar
  149. 149.
    Hu, J.: Asymptotics beyond all orders for a certain type of nonlinear oscillator, Stud. Appl. Math. 96 (1996), 85–109.Google Scholar
  150. 150.
    Hu, J. and Kruskal, M.: Reflection coefficient beyond all orders for singular problems, 1, separated critical-points on the nearest critical-level line, J. Math. Phys. 32 (1991), 2400–2405.Google Scholar
  151. 151.
    Hu, J. and Kruskal, M.: Reflection coefficient beyond all orders for singular problems, 2, close-spaced critical-points on the nearest critical-level line, J. Math. Phys. 32 (1991), 2676–2678.Google Scholar
  152. 152.
    Hu, J. and Kruskal, M. D.: Reflection coefficient beyond all orders for singular problems, in: H. Segur, S. Tanveer and H. Levine (eds), Asymptotics Beyond All Orders, Plenum, Amsterdam, 1991, pp. 247–253.Google Scholar
  153. 153.
    Hunter, J. K. and Scheurle, J.: Existence of perturbed solitary wave solutions to a model equation for water waves, Physica D 32 (1988), 253–268. FKdV nonlocal solitons.Google Scholar
  154. 154.
    Jardine, M., Allen, H. R., Grundy, R. E. and Priest, E. R.: A family of two-dimensional nonlinear solutions for magnetic field annihilation, J. Geophys. Res. — Space Physics 97 (1992), 4199–4207.Google Scholar
  155. 155.
    Jones, D. S.: Uniform asymptotic remainders, in: R. Wong (ed.), Asymptotic Comput. Anal., Marcel Dekker, New York, 1990, pp. 241–264.Google Scholar
  156. 156.
    Jones, D. S.: Asymptotic series and remainders, in: B. D. Sleeman and R. J. Jarvis (eds), Ordinary and Partial Differential Equations, Volume IV, Longman, London, 1993, p. 12.Google Scholar
  157. 157.
    Jones, D. S.: Asymptotic remainders, SIAM J. Math. Anal. 25 (1994), 474–490. Hyperasymptotics; shows that the remainders in a variety of asymptotic series can be uniformly approximated by the same integral.Google Scholar
  158. 158.
    Jones, D. S.: Introduction to Asymptotics: A Treatment Using Nonstandard Analysis, World Scientific, Singapore, 1997, 160 pages; includes a chapter on hyperasymptotics.Google Scholar
  159. 159.
    Kaplun, S.: Low Reynolds number flow past a circular cylinder, J. Math. Mech. 6 (1957), 595–603. Log-plus-power expansions.Google Scholar
  160. 160.
    Kaplun, S.: Fluid Mechanics and Singular Perturbations, Academic Press, New York, 1967. Ed. by P. A. Lagerstrom, L. N. Howard and C. S. Liu; Analyzed difficulties of log-plus-power expansions.Google Scholar
  161. 161.
    Kaplun, S. and Lagerstrom, P. A.: Asymptotic expansions of Navier-Stokes solutions for small Reynolds number, J. Math. Mech. 6 (1957), 585–593.Google Scholar
  162. 162.
    Kath, W. L and Kriegsmann, G. A.: Optical tunnelling: Radiation losses in bent fibre-optic waveguides, IMA J. Appl. Math. 41 (1988), 85–103. Radiation loss is exponentially small in the small parameter, so “beyond all orders” perturbation theory is developed here.Google Scholar
  163. 163.
    Kessler, D. A., Koplik, J. and Levine, H.: Pattern selection in fingered growth phenomena, Adv. Phys. 37 (1988), 255–339.Google Scholar
  164. 164.
    Killingbeck, J.: Quantum-mechanical perturbation theory, Reports on Progress in Theoretical Physics 40 (1977), 977–1031. Divergence of asymptotic series.Google Scholar
  165. 165.
    Killingbeck, J.: A polynomial perturbation problem, Phys. Lett. A 67 (1978), 13–15.Google Scholar
  166. 166.
    Killingbeck, J.: Another attack on the sign-change argument, Chem. Phys. Lett. 80 (1981), 601–603.Google Scholar
  167. 167.
    Kivshar, Y. S. and Malomed, B. A.: Comment on 'nonexistence of small amplitude breather solutions in ψ 4 theory', Phys. Rev. Lett. 60 (1988), 164–164. Exponentially small radiation from perturbed from perturbed sine-Gordon solitons and other species.Google Scholar
  168. 168.
    Kivshar, Y. S. and Malomed, B. A.: Dynamics of solitons in nearly integrable systems, Revs. Mod. Phys. 61 (1989), 763–915. Exponentially small radiation from perturbed sine-Gordon solitons and other species.Google Scholar
  169. 169.
    Kowalenko, V., Glasser, M. L., Taucher, T. and Frankel, N. E.: Generalised Euler-Jacobi Inversion Formula and Asymptotics Beyond All Orders, London Math. Soc. Lecture Note Ser. 214, Cambridge University Press, Cambridge, 1995.Google Scholar
  170. 170.
    Kropinski, M. C. A., Ward, M. J. and Keller, J. B.: A hybrid asymptotic-numerical method for low Reynolds number flows past a cylindrical body, SIAM J. Appl. Math. 55 (1995), 1484–1510. Log-and-power series in Re.Google Scholar
  171. 171.
    Kruskal, M. D. and Segur, H.: Asymptotics beyond all orders in a model of crystal growth, Tech. Rep. 85–25, Aeronautical Research Associates of Princeton, 1985.Google Scholar
  172. 172.
    Kruskal, M. D. and Segur, H.: Asymptotics beyond all orders in a model of crystal growth, Stud. Appl. Math. 85 (1991), 129–181.Google Scholar
  173. 173.
    Laforgue, J. G. L. and O'Malley, R. E., Jr.: Supersensitive boundary value problems, in: H. G. Kaper and M. Garbey (eds), Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters, Kluwer Acad. Publ., Dordrecht, 1993, pp. 215–223.Google Scholar
  174. 174.
    Laforgue, J. G. L. and O'Malley, R. E., Jr.: On the motion of viscous shocks and the supersensitivity of their steady-state limits, Methods Appl. Anal. 1 (1994), 465–487. Exponential smallness in shock movement.Google Scholar
  175. 175.
    Laforgue, J. G. L. and O'Malley, R. E., Jr.: Shock layer movement for Burgers' equation, SIAM J. Appl. Math. 55 (1995), 332–347.Google Scholar
  176. 176.
    Laforgue, J. G. L. and O'Malley, R. E., Jr.: Viscous shock motion for advection-diffusion equation, Stud. Appl. Math. 95 (1995), 147–170.Google Scholar
  177. 177.
    Lanczos, C.: Trigonometric interpolation of empirical and analytical functions, J. Math. Phys. 17 (1938), 123–199. The origin of both the pseudospectral method and the tau method. Lanczos is to spectral methods what Newton was to calculus.Google Scholar
  178. 178.
    Lanczos, C.: Discourse on Fourier Series, Oliver and Boyd, Edinburgh, 1966.Google Scholar
  179. 179.
    Lange, C. G. and Weinitschke, H. J.: Singular perturbations of elliptic problems on domains with small holes, Stud. Appl. Math. 92 (1994), 55–93. Log-and-power series for eigenvalues with comparisons with numerical solutions; demonstrates the surprisingly large sensitivity of eigenvalues to small holes in the membrane.Google Scholar
  180. 180.
    Lazutkin, V. F., Schachmannski, I. G. and Tabanov, M. B.: Splitting of separatrices for standard and semistandard mappings, Physica D 40 (1989), 235–248.Google Scholar
  181. 181.
    Le Guillou, J. C. and Zinn-Justin, J. (eds): Large-Order Behaviour of Perturbation Theory, North-Holland, Amsterdam, 1990. Exponential corrections to power series, mostly in quantum mechanics.Google Scholar
  182. 182.
    Lim, R. and Berry, M. V.: Superadiabatic tracking for quantum evolution, J. Phys. A 24 (1991), 3255–3264.Google Scholar
  183. 183.
    Liu, J. and Wood, A.: Matched asymptotics for a generalisation of a model equation for optical tunnelling, Europ. J. Appl. Math. 2 (1991), 223–231. Compute the exponentially small imaginary part of the eigenvalue λ, (λ) ~ exp(−1/ε 1/n), for the problem u xx + (λ + εx n)u = 0 with outward radiating waves on the semi-infinite interval.Google Scholar
  184. 184.
    Lorenz, E. N. and Krishnamurthy, V.: On the nonexistence of a slow manifold, J. Atmos. Sci. 44 (1987), 2940–2950. Weakly non-local in time.Google Scholar
  185. 185.
    Lozano, C. and Meyer, R. E.: Leakage and response of waves trapped by round islands, Phys. Fluids 19 (1976), 1075–1088. Leakage is exponentially small in the perturbation parameter.Google Scholar
  186. 186.
    Lu, C., MacGillivray, A. D. and Hastings, S. P.: Asymptotic behavior of solutions of a similarity equation for laminar flows in channels with porous walls, IMA J. Appl. Math. 49 (1992), 139–162. Beyond-all-orders matched asymptotics.Google Scholar
  187. 187.
    Luke, Y. L.: The Special Functions and Their Approximations, Vols I and II, Academic Press, New York, 1969.Google Scholar
  188. 188.
    Lyness, J. N.: Adjusted forms of the Fourier coefficient asymptotic expansion, Math. Comput. 25 (1971), 87–104.Google Scholar
  189. 189.
    Lyness, J. N.: The calculation of trigonometric Fourier coefficients, J. Comput. Phys. 54 (1984), 57–73. A good review article which discusses the integration-by-parts series for the asymptotic Fourier coefficients.Google Scholar
  190. 190.
    Lyness, J. N. and Ninham, B. W.: Numerical quadrature and asymptotic expansions, Math. Comp. 21 (1967), 162. Shows that the error is a power series in the grid spacing h plus an integral which is transcendentally small in 1/h.Google Scholar
  191. 191.
    MacGillivray, A. D.: A method for incorporating transcendentally small terms into the method of matched asymptotic expansions, Stud. Appl. Math. 99 (1997), 285–310. Linear example has a general solution which is the sum of an antisymmetric function A(x) which is well-approximated by a second-derivative-dropping outer expansion plus a symmetric part which is exponentially small except at the boundaries, and can be approximated only by a WKB method (with second derivative retained). His nonlinear example is the Carrier-Pearson problem whose exact solution is a KdV cnoidal wave, but required to satisfy Dirichlet boundary conditions. Matching fails because each soliton peak can be translated with only an exponentially small error; MacGillivray shows that the peaks, however many are fit between the boundaries, must be evenly spaced.Google Scholar
  192. 192.
    MacGillivray, A. D., Liu, B. and Kazarinoff, N. D.: Asymptotic analysis of the peeling-off point of a French duck, Methods Appl. Anal. 1 (1994), 488–509. Beyond-all-orders theory.Google Scholar
  193. 193.
    MacGillivray, A. D. and Lu, C.: Asymptotic solution of a laminar flow in a porous channel with large suction: A nonlinear turning point problem, Methods Appl. Anal. 1 (1994), 229–248. Incorporation of exponentially small terms into matched asymptotics.Google Scholar
  194. 194.
    Malomed, B. A.: Emission from, quasi-classical quantization, and stochastic decay of sine-Gordon solitons in external fields, Physica D 27 (1987), 113–157. Explicit calculations of exponentially small radiation.Google Scholar
  195. 195.
    Malomed, B. A.: Perturbation-induced radiative decay of solitons, Phys. Lett. A 123 (1987), 459–468. Explicit calculations of exponentially small radiation for perturbed sine-Gordon solitons, fluxons, kinks and coupled double-sine-Gordon equations.Google Scholar
  196. 196.
    Marion, M. and Témam, R.: Nonlinear Galerkin methods, SIAM J. Numer. Anal. 26 (19), 1139–1157.Google Scholar
  197. 197.
    Martin, O. and Branis, S. V.: Solitary waves in self-induced transparency, in: H. Segur, S. Tanveer and H. Levine (eds), Asymptotics Beyond All Orders, Plenum, Amsterdam, 1991, pp. 327–336.Google Scholar
  198. 198.
    Martinet, J. and Ramis, J.-P.: Elementary acceleration and multisummability-I, Ann. Inst. H. Poincaré-Phys. Theor. 54 (1991), 331–401.Google Scholar
  199. 199.
    Maslov, V. P.: The Complex WKB Method for Nonlinear Equations I: Linear Theory, Birkhäuser, Boston, 1994. Calculation of exponentially small terms.Google Scholar
  200. 200.
    McLeod, J. B.: Smoothing of Stokes discontinuities, Proc. Roy. Soc. London A 437 (1992), 343–354.Google Scholar
  201. 201.
    Meiss, J. D. and Horton, W.: Solitary drift waves in the presence of magnetic shear, Phys. Fluids 26 (1983), 990–997. Show that plasma modons leak radiation for large |x|, and therefore are nanopterons.Google Scholar
  202. 202.
    Meyer, R. E.: Adiabatic variation. Part I: Exponential property for the simple oscillator, J. Appl. Math. Phys. ZAMP 24 (1973), 517–524.Google Scholar
  203. 203.
    Meyer, R. E.: Adiabatic variation. Part II: Action change for simple oscillator, J. Appl. Math. Phys. ZAMP (1973).Google Scholar
  204. 204.
    Meyer, R. E.: Exponential action of a pendulum, Bull. Amer. Math. Soc. 80 (1974), 164–168.Google Scholar
  205. 205.
    Meyer, R. E.: Adiabatic variation. Part IV: Action change of a pendulum for general frequency, J. Appl. Math. Phys. ZAMP 25 (1974), 651–654.Google Scholar
  206. 206.
    Meyer, R. E.: Gradual reflection of short waves, SIAM J. Appl. Math. 29 (1975), 481–492.Google Scholar
  207. 207.
    Meyer, R. E.: Adiabatic variation. Part V: Nonlinear near-periodic oscillator, J. Appl. Math. Phys. ZAMP 27 (1976), 181–195.Google Scholar
  208. 208.
    Meyer, R. E.: Quasiclassical scattering above barriers in one dimension, J. Math. Phys. 17 (1976), 1039–1041.Google Scholar
  209. 209.
    Meyer, R. E.: Surface wave reflection by underwater ridges, J. Phys. Oceangr. 9 (1979), 150–157.Google Scholar
  210. 210.
    Meyer, R. E.: Exponential asymptotics, SIAM Rev. 22 (1980), 213–224.Google Scholar
  211. 211.
    Meyer, R. E.: Wave reflection and quasiresonance, in: Theory and Application of Singular Perturbation, Lecture Notes in Math. 942, Springer-Verlag, New York, 1982, pp. 84–112.Google Scholar
  212. 212.
    Meyer, R. E.: Quasiresonance of long life, J. Math. Phys. 27 (1986), 238–248.Google Scholar
  213. 213.
    Meyer, R. E.: A simple explanation of Stokes phenomenon, SIAM Rev. 31 (1989), 435–444.Google Scholar
  214. 214.
    Meyer, R. E.: Observable tunneling in several dimensions, in: R. Wong (ed.), Asymptotic and Computational Analysis, Marcel Dekker, New York, 1990, pp. 299–328.Google Scholar
  215. 215.
    Meyer, R. E.: On exponential asymptotics for nonseparable wave equations I: Complex geometrical optics and connection, SIAM J. Appl. Math. 51 (1991), 1585–1601.Google Scholar
  216. 216.
    Meyer, R. E.: On exponential asymptotics for nonseparable wave equations I: EBK quantization, SIAM J. Appl. Math. 51 (1991), 1602–1615.Google Scholar
  217. 217.
    Meyer, R. E.: Exponential asymptotics for partial differential equations, in: H. Segur, S. Tanveer and H. Levine (eds), Asymptotics Beyond All Oreders, Plenum, Amsterdam, 1991, pp. 29–36.Google Scholar
  218. 218.
    Meyer, R. E.: Approximation and asymptotics, in: D. A. Martin and G. R. Wickham (eds), Wave Asymptotics, Cambridge University Press, New York, 1992, pp. 43–53. Blunt and perceptive review.Google Scholar
  219. 219.
    Meyer, R. E. and Guay, E. J.: Adiabatic variation. Part III: A deep mirror model, J. Appl. Math. Phys. ZAMP 25 (1974), 643–650.Google Scholar
  220. 220.
    Meyer, R. E. and Painter, J. F.: Wave trapping with shore absorption, J. Engg. Math. 13 (1979), 33–45.Google Scholar
  221. 221.
    Meyer, R. E. and Painter, J. F.: New connection method across more general turning points, Bull. Amer. Math. Soc. 4 (1981), 335–338.Google Scholar
  222. 222.
    Meyer, R. E. and Painter, J. F.: Irregular points of modulation, Adv. Appl. Math. 4 (1982), 145–174.Google Scholar
  223. 223.
    Meyer, R. E. and Painter, J. F.: Connection for wave modulation, SIAM J. Math. Anal. 14 (1983), 450–462.Google Scholar
  224. 224.
    Meyer, R. E. and Painter, J. F.: On the Schrödinger connection, Bull. Amer. Math. Soc. 8 (1983), 73–76.Google Scholar
  225. 225.
    Meyer, R. E. and Shen, M. C.: On Floquet's theorem for nonseparable partial differential equations, in: B. D. Sleeman (ed.), Eleventh Dundee Conference in Ordinary and Partial Differential Equations, Pitman Adv. Math. Res. Notes, Longman-Wiley, New York, 1991, pp. 146–167.Google Scholar
  226. 226.
    Meyer, R. E. and Shen, M. C.: On exponential asymptotics for nonseparable wave equations III: Approximate spectral bands of periodic potentials on strips, SIAM J. Appl. Math. 52 (1992), 730–745.Google Scholar
  227. 227.
    Miller, G. F.: On the convergence of Chebyshev series for functions possessing a singularity in the range of representation, SIAM J. Numer. Anal. 3 (1966), 390–409.Google Scholar
  228. 228.
    Murphy, B. T. M. and Wood, A. D.: Exponentially improved asymptotic solutions of second order ordinary differential equations of arbitrary rank, Methods Appl. Anal. (1998).Google Scholar
  229. 229.
    Nayfeh, A. H.: Perturbation Methods, Wiley, New York, 1973. Good reference on the method of multiple scales.Google Scholar
  230. 230.
    Németh, G.: Polynomial approximation to the function ψ(a, c, x), Technical Report, Central Institute for Physics, Budapest, 1965.Google Scholar
  231. 231.
    Németh, G.: Chebyshev expansion of Gauss' hypergeometric function, Technical Report, Central Institute for Physics, Budapest, 1965.Google Scholar
  232. 232.
    Németh, G.: Chebyshev expansions of the Bessel function. I, Proceedings of the KFKI 14 (1966), 157.Google Scholar
  233. 233.
    Németh, G.: Chebyshev expansions of the Bessel functions. II, Proceedings of the KFKI 14 (1966), 299–309.Google Scholar
  234. 234.
    Németh, G.: Note on the zeros of the Bessel functions, Technical Report, Central Institute for Physics, Budapest, 1969.Google Scholar
  235. 235.
    Németh, G.: Chebyshev series for special functions, Technical Report 74–13, Central Institute for Physics, Budapest, 1974.Google Scholar
  236. 236.
    Németh, G.: Mathematical Approximation of Special Functions: Ten Papers on Chebyshev Expansions, Nova Science Publishers, New York, 1992, p. 200. [Tables, with some theory and coefficient asymptotics, for Bessel functions, Airy functions, zeros of Bessel functions, and generalized hypergeometric functions.]Google Scholar
  237. 237.
    Olde Daalhuis, A. B.: Hyperasymptotic expansions of confluent hypergeometric functions, IMA J. Appl. Math. 49 (1992), 203–216.Google Scholar
  238. 238.
    Olde Daalhuis, A. B.: Hyperasymptotics and the Stokes phenomenon, Proc. Roy. Math. Soc. Edinburgh A 123 (1993), 731–743.Google Scholar
  239. 239.
    Olde Daalhuis, A. B.: Hyperasymptotic solutions of second-order linear differential equations II, Methods Appl. Anal. 2 (1995), 198–211.Google Scholar
  240. 240.
    Olde Daalhuis, A. B.: Hyperterminants I, J. Comput. Appl. Math. 76 (1996), 255–264. Convergent series for the generalized Stieltjes functions that appear in hyperasymptotic expansions.Google Scholar
  241. 241.
    Olde Daalhuis, A. B.: Hyperasymptotic solutions of higher order linear differential equations with a singularity of rank one, Proc. Roy. Soc. London A 454 (1997), 1–29. Borel-Laplace transform; new method to compute Stokes multipliers.Google Scholar
  242. 242.
    Olde Daalhuis, A. B.: Hyperterminants, II, J. Comput. Appl. Math. 89 (1998), 87–95. Convergent and computable expansions for hyperterminants so that these can be easily evaluated for use with hyperasymptotic perturbation theories. The expansions involve hypergeometric (2 F 1) functions, but these can be computed by recurrence.Google Scholar
  243. 243.
    Olde Daalhuis, A. B., Chapman, S. J., King, J. R., Ockendon, J. R. and Tew, R. H.: Stokes phenomenon and matched asymptotic expansions, SIAM J. Appl. Math. 6 (1995), 1469–1483.Google Scholar
  244. 244.
    Olde Daalhuis, A. B. and Olver, F. W. J.: Exponentially improved asymptotic solutions of ordinary differential equations. II. Irregular singularities of rank one, Proc. Roy. Soc. London A 445 (1994), 39–56.Google Scholar
  245. 245.
    Olde Daalhuis, A. B. and Olver, F. W. J.: Hyperasymptotic solutions of second-order linear differential equations. I, Methods Appl. Anal. 2 (1995), 173–197.Google Scholar
  246. 246.
    Olde Daalhuis, A. B. and Olver, F. W. J.: On the calculation of Stokes multipliers for linear second-order differential equations, Methods Appl. Anal. 2 (1995), 348–367.Google Scholar
  247. 247.
    Olde Daalhuis, A. B. and Olver, F. W. J.: Exponentially-improved asymptotic solutions of ordinary differential equations. II: Irregular singularities of rank one, Proc. Roy. Soc. London A 2 (1995), 39–56.Google Scholar
  248. 248.
    Olde Daalhuis, A. B. and Olver, F. W.: On the asymptotic and numerical solution of ordinary differential equations, SIAM Rev. 40 (1998). In press.Google Scholar
  249. 249.
    Olver, F.W. J.: Asymptotics and Spectral Functions, Academic Press, New York, 1974.Google Scholar
  250. 250.
    Olver, F.W. J.: On Stokes' phenomenon and converging factors, in: R. Wong (ed.), Asymptotic and Computational Analysis, Marcel Dekker, New York, 1990, pp. 329–356.Google Scholar
  251. 251.
    Olver, F. W. J.: Uniform, exponentially-improved asymptotic expansions for the generalized exponential integral, SIAM J. Math. Anal. 22 (1991), 1460–1474.Google Scholar
  252. 252.
    Olver, F. W. J.: Uniform, exponentially-improved asymptotic expansions for the confluent hypergeometric function and other integral transforms, SIAM J. Math. Anal. 22 (1991), 1475–1489.Google Scholar
  253. 253.
    Olver, F. W. J.: Exponentially-improved asymptotic solutions of ordinary differential equations I: The confluent hypergeometric function, SIAM J. Math. Anal. 24 (1993), 756–767.Google Scholar
  254. 254.
    Olver, F. W. J.: Asymptotic expansions of the coefficient in asymptotic series solutions of linear differential equations, Methods Appl. Anal. 1 (1994), 1–13.Google Scholar
  255. 255.
    Oppenheimer, J. R.: Three notes on the quantum theory of aperiodic effects, Phys. Rev. 31 (1928), 66–81. Shows that Zeeman effect generates an imaginary part to the energy which is exponentially small in the reciprocal of the perturbation parameter.Google Scholar
  256. 256.
    Paris, R. B.: Smoothing of the Stokes phenomenon for high-order differential equations, Proc. Roy. Soc. London A 436 (1992), 165–186.Google Scholar
  257. 257.
    Paris, R. B.: Smoothing of the Stokes phenomenon using Mellin-Barnes integrals, J. Comput. Appl. Math. 41 (1992), 117–133.Google Scholar
  258. 258.
    Paris, R. B. and Wood, A. D.: A model for optical tunneling, IMA J. Appl. Math. 43 (1989), 273–284. Exponentially small leakage from the fiber.Google Scholar
  259. 259.
    Paris, R. B. and Wood, A. D.: Exponentially-improved asymptotics for the gamma function, J. Comput. Appl. Math. 41 (1992), 135–143.Google Scholar
  260. 260.
    Paris, R. B. and Wood, A. D.: Stokes phenomenon demystified, IMA Bulletin 31 (1995), 21–28. Short review of hyperasymptotics.Google Scholar
  261. 261.
    Pokrovskii, V. L.: Science and life: conversations with Dau, in: I. M. Khalatnikov (ed.), Landau, the Physicist and the Man: Recollections of L. D. Landau, Pergamon Press, Oxford, 1989. Relates the amusing story that the Nobel Laureate Lev Landau believed the Pokrovskii-Khalatnikov (1961) “beyond-all-orders” method was wrong. The correct answer (but with incorrect derivation) is given in the Landau-Lifschitz textbooks. Eventually, Landau realized his mistake and apologized.Google Scholar
  262. 262.
    Pokrovskii, V. L. and Khalatnikov, I. M.: On the problem of above-barrier reflection of high-energy particles, Soviet Phys. JETP 13 (1961), 1207–1210. Applies matched asymptotics in the complex plane to compute the exponentially small reflection which is missed by WKB.Google Scholar
  263. 263.
    Pomeau, Y., Ramani, A. and Grammaticos, G.: A Structural stability of the Korteweg-de Vries solitons under a singular perturbation, Physica D 21 (1988), 127–134. Weakly nonlocal solitons of the FKdV equation; complex-plane matched asymptotics.Google Scholar
  264. 264.
    Proudman, I. and Pearson, J. R.: Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder, J. Fluid Mech. 2 (1957), 237–262. Log-and-powers expansion.Google Scholar
  265. 265.
    Raithby, G.: Laminar heat transfer in the thermal entrance region of circular tubes and two-dimensional rectangular ducts with wall suction and injection, Internat. J. Heat Mass Transfer 14 (1971), 223–243.Google Scholar
  266. 266.
    Ramis, J. P. and Schafke, R.: Gevrey separation of fast and slow variables, Nonlinearity 9 (1996), 353–384. Iterated averaging transformations of perturbed one phase Hamiltonian systems, not necessarily conservative.Google Scholar
  267. 267.
    Reddy, S. C., Schmid, P. J. and Henningson, D. S.: Pseudospectra of the Orr-Sommerfeld equation, SIAM J. Appl. Math. 53 (19), 15–47. Exponentially sensitive eigenvalues.Google Scholar
  268. 268.
    Reichel, L. and Trefethen, N. L.: The eigenvalues and pseudo-eigenvalues of Toeplitz matrices, Linear Algebra Appl. 162 (1992), 153–185.Google Scholar
  269. 269.
    Reinhardt, W. P.: Padé summation for the real and imaginary parts of atomic Stark eigenvalues, Int. J. Quantum Chem. 21 (1982), 133–146. Two successive Padé transformations are used to compute the exponentially small imaginary part of the eigenvalue.Google Scholar
  270. 270.
    Richardson, L. F.: The deferred approach to the limit. Part I. — Single lattice, Philos. Trans. Roy. Soc. 226 (1927), 299–349. Invention of Richardson extrapolation, which is an asymptotic but divergent procedure because of beyond-all-orders terms in the grid spacing h. Reprinted in Richardson's Collected Papers, ed. by O. M. Ashford et al. Google Scholar
  271. 271.
    Richardson, L. F.: The deferred approach to the limit. Part I.—Single lattice, in: O.M. Ashford, H. Charnock, P. G. Drazin, J. C. R. Hunt, P. Smoker and I. Sutherland (eds), Collected Papers of Lewis Fry Richardson, Cambridge University Press, New York, 1993, pp. 625–678.Google Scholar
  272. 272.
    Robinson, W. A.: The existence of multiple solutions for the laminar flow in a uniformly porous channel with suction at both walls, J. Engg. Math. 10 (1976), 23–40. Exponentially small difference between two distinct nonlinear solutions.Google Scholar
  273. 273.
    Rosser, J. B.: Transformations to speed the convergence of series, J. Res. Nat. Bureau of Standards 46 (1951), 56–64. Convergence factors; improvements to asymptotic series.Google Scholar
  274. 274.
    Rosser, J. B.: Explicit remainder terms for some asymptotic series, J. Rat. Mech. Anal. 4 (1955), 595–626.Google Scholar
  275. 275.
    Scheurle, J., Marsden, J. E. and Holmes, P.: Exponentially small estimate for separatrix splitting, in: H. Segur, S. Tanveer and H. Levine (eds), Asymptotics Beyond All Orders, Plenum, Amsterdam, 1991, pp. 187–196. Show that the splitting is proportional to ν(ε) exp(−π/(2ε)) where ν(ε) has as essential singularity at ε = 0 and must be represented as a Laurent series rather than a power series. No examples of essentially-singular ν(ε) for nonlocal solitons are as yet known.Google Scholar
  276. 276.
    Schraiman, B. I.: On velocity selection and the Saffman-Taylor problem, Phys. Rev. Lett. 56 (1986), 2028–2031.Google Scholar
  277. 277.
    Schulten, Z., Anderson, D. G. M. and Gordon, R. G.: An algorithm for the evaluation of the complex Airy functions, J. Comput. Phys. 31 (1979), 60–75. An alternative to hyperasymptotics — a very efficient one.Google Scholar
  278. 278.
    Segur, H. and Kruskal, D.: On the nonexistence of small amplitude breather solutions in φ 4 theory, Phys. Rev. Lett. 58 (1987), 747–750. Title not withstanding, the φ 4 breather does exist, but is nonlocal.Google Scholar
  279. 279.
    Segur, H., Tanveer, S. and Levine, H. (eds): Asymptotics Beyond All Orders, Plenum, New York, 1991, 389 pages.Google Scholar
  280. 280.
    Sergeev, A. V.: Summation of the eigenvalue perturbation series by multivalued Padé approximants — application to resonance problems and double wells, J. Phys. A: Math. Gen. 28 (1995), 4157–4162. Shows that Shafer's generalization of Padé approximants, when the approximant is the solution of a quadratic equation with polynomial coefficients, converge to the lowest eigenvalue of the quantum quartic oscillator even when the perturbation parameter ε (“coupling constant”) is real and negative and thus lies on the branch cut of the eigenvalue. (Ordinary Padé approximants fail on the branch cut.)Google Scholar
  281. 281.
    Sergeev, A. V. and Goodson, D. Z.: Summation of asymptotic expansions of multiple-valued functions using algebraic approximants: Application to anharmonic oscillators, J. Phys. A: Math. Gen. 31 (1998), 4301–4317. Show that Shafer's (1974) generalization of Padé approximants can successfully sum the exponentially small imaginary part of some functions with divergent power series, as illustrated through the quantum quartic oscillation with negative coupling constant.Google Scholar
  282. 282.
    Shafer, R. E.: On quadratic approximation, SIAM J. Numer. Anal. 11 (1974), 447–460. Generalization of Padé approximants. A function u(z), known only through its power series, is approximated by the root of a quadratic equation. The coefficients of the quadratic are polynomials which are chosen so that the power series of the root of the quadratic equation will match the power series of u to a given order.Google Scholar
  283. 283.
    Skinner, L. A.: Generalized expansions for slow flow past a cylinder, Quart. J. Mech. Appl. Math. 28 (1975), 333–340. Log-and-series in Re.Google Scholar
  284. 284.
    Snyder, M. A.: Chebyshev Methods in Numerical Approximation, Prentice-Hall, Englewood Cliffs, New Jersey, 1966, p. 150.Google Scholar
  285. 285.
    Sternin, B. Y. and Shatalov, V. E.: Borel-Laplace Transform and Asymptotic Theory: Introduction to Resurgent Analysis, CRC Press, New York, 1996.Google Scholar
  286. 286.
    Stieltjes, T. J.: Recherches sur quelques séries semi-convergentes, Ann. Sci. École Norm. Sup. 3 (1886), 201–258. Hyperasymptotic extensions to asymptotic series.Google Scholar
  287. 287.
    Suvernev, A. A. and Goodson, D. Z.: Perturbation theory for coupled anharmonic oscillators, J. Chem. Phys. 106 (1997), 2681–2684. Computation of complex-valued eigenvalues through quadratic Shafer-Padé approximants; the imaginary parts are exponentially small in the reciprocal of the perturbation parameter.Google Scholar
  288. 288.
    Tanveer, S.: Analytic theory for the selection of Saffman-Taylor finger in the presence of thin-film effects, Proc. Roy. Soc. London A 428 (1990), 511.Google Scholar
  289. 289.
    Tanveer, S.: Viscous displacement in a Hele-Shaw cell, in: H. Segur, S. Tanveer and H. Levine (eds), Asymptotics Beyond All Orders, Plenum, Amsterdam, 1991, pp. 131–154.Google Scholar
  290. 290.
    Terrill, R. M.: Laminar flow in a uniformly porous channel with large injection, Aeronautical Quarterly 16 (1965), 323–332.Google Scholar
  291. 291.
    Terrill, R.M.: On some exponentially small terms arising in flow through a porous pipe, Quart. J. Mech. Appl. Math. 26 (1973), 347–354.Google Scholar
  292. 292.
    Terrill, R. M. and Thomas, P.W.: Laminar flow in a uniformly porous pipe, Appl. Sci. Res. 21 (1969), 37–67.Google Scholar
  293. 293.
    Tovbis, A.: On exponentially small terms of solutions to nonlinear ordinary differential equations, Methods Appl. Anal. 1 (1994), 57–74.Google Scholar
  294. 294.
    Trefethen, L. N. and Bau, D., III: Numerical Linear Algebra, SIAM, Philadelphia, 1997.Google Scholar
  295. 295.
    Tuan, P. D. and Elliott, D.: Coefficients in series expansions for certain classes of functions, Math. Comp. 26 (1972), 213–232.Google Scholar
  296. 296.
    Van der Waerden, B. L.: On the method of saddle points, Appl. Sci. Res. B2 (1951), 33–45. Steepest descent for integral with nearly coincident saddle point and pole.Google Scholar
  297. 297.
    Van Dyke, M.: Perturbation Methods in Fluid Mechanics, 1st edn, Academic Press, Boston, 1964.Google Scholar
  298. 298.
    Van Dyke, M.: Perturbation Methods in Fluid Mechanics, 2nd edn, Parabolic Press, Stanford, California, 1975.Google Scholar
  299. 299.
    Vanden-Broeck, J.-M. and Turner, R. E. L.: Long periodic internal waves, Phys. Fluids A 4 (1992), 1929–1935.Google Scholar
  300. 300.
    Va\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\imath } \)nberg, V. M., Mur, V. D., Popov, V. S. and Sergeev, A. V.: Strong-field Stark effect, JETP Lett. 44 (1986), 9–13. Shafer-Padé approximants are used to compute the complex-valued eigenvalues of the hydrogen atom in an electric field. The imaginary part is exponentially in the reciprocal of the perturbation parameter.Google Scholar
  301. 301.
    Voros, A.: Semi-classical correspondence and exact results: The case of the spectra of homogeneous Schrödinger operators, J. Physique-Lett. 43 (1982), L1–L4.Google Scholar
  302. 302.
    Voros, A.: The return of the quartic oscillator: the complex WKB method, Ann. Inst. H. Poincaré, Physique Théorique 39 (1983), 211–338.Google Scholar
  303. 303.
    Voros, A.: Schrödinger equation from O(ħ) to o(ħ ), in: M. C. Gutzwiller, A. Inomata, J. R. Klauder and L. Streit (eds), Path Integrals from meV to MeV, No. 7 in Bielefeld Encounters in Physics and Mathematics, Bielefeld Center for Interdisciplinary Research, World Scientific, Singapore, 1986, pp. 173–195. Review.Google Scholar
  304. 304.
    Voros, A.: Quantum resurgence, Ann. Inst. Fourier 43 (1993), 1509–1534. In French.Google Scholar
  305. 305.
    Voros, A.: Aspects of semiclassical theory in the presence of classical chaos, Prog. Theor. Phys. 116 (1994), 17–44.Google Scholar
  306. 306.
    Voros, A.: Exact quantization condition for anharmonic oscillators (in one dimension), J. Phys. A: Math. Gen. 27 (1994), 4653–4661.Google Scholar
  307. 307.
    Wai, P. K. A., Chen, H. H. and Lee, Y. C.: Radiation by “solitons” at the zero group-dispersion wavelength of single-mode optimal fibers, Phys. Rev. A 41 (19), 426–439. Nonlocal envelope solitons of the TNLS Eq. Their (2.1) contains a typo and should be q–0304; (2) = −(39/2)A 2 q–0304; (0) + 21|q–0304; (0)|2 q–0304; (0).Google Scholar
  308. 308.
    Ward, M. J., Henshaw, W. D. and Keller, J. B.: Summing logarithmic expansions for singularly perturbed eigenvalue problems, SIAM J. Appl. Math. 53 (1993), 799–828.Google Scholar
  309. 309.
    Weideman, J. A. C.: Computation of the complex error function, SIAM J. Numer. Anal. 31 (1994), 1497–1518. [Errata: 1995, 32, 330–331.] These series of rational functions are useful for complex-valued z.Google Scholar
  310. 310.
    Weideman, J. A. C.: Computing integrals of the complex error function, Proceedings of Symposia in Applied Mathematics 48 (1994), 403–407. Short version of Weideman (1994a).Google Scholar
  311. 311.
    Weideman, J. A. C.: Errata: computation of the complex error function, SIAM J. Numer. Anal. 32 (1995), 330–331.Google Scholar
  312. 312.
    Weideman, J. A. C. and Cloot, A.: Spectral methods and mappings for evolution equations on the infinite line, Comput. Meth. Appl. Mech. Engr. 80 (1990), 467–481. Numerical.Google Scholar
  313. 313.
    Weinstein, M. I. and Keller, J. B.: Hill's equation with a large potential, SIAM J. Appl. Math. 45 (1985), 200–214.Google Scholar
  314. 314.
    Weinstein, M. I. and Keller, J. B.: Asymptotic behavior of stability regions for Hill's equation, SIAM J. Appl. Math. 47 (1987), 941–958.Google Scholar
  315. 315.
    Weniger, E. J.: Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series, Comput. Phys. Reports 10 (1989), 189–371.Google Scholar
  316. 316.
    Weniger, E. J.: On the derivation of iterated sequence transformations for the acceleration of convergence and the summation of divergent series, Comput. Phys. Comm. 64 (1991), 19–45.Google Scholar
  317. 317.
    Wimp, J.: The asymptotic representation of a class of G-functions for large parameter, Math. Comp. 21 (1967), 639–646.Google Scholar
  318. 318.
    Wimp, J.: Sequence Transformations and Their Applications, Academic Press, New York, 1981.Google Scholar
  319. 319.
    Wong, R.: Asymptotic Approximation of Integrals, Academic Press, New York, 1989.Google Scholar
  320. 320.
    Wood, A.: Stokes phenomenon for high order differential equations, Z. Angew. Math. Mech. 76 (1996), 45–48. Brief review.Google Scholar
  321. 321.
    Wood, A. D.: Exponential asymptotics and spectral theory for curved optical waveguides, in: H. Segur, S. Tanveer and H. Levine (eds), Asymptotics Beyond All Orders, Plenum, Amsterdam, 1991, pp. 317–326.Google Scholar
  322. 322.
    Wood, A. D. and Paris, R. B.: On eigenvalues with exponentially small imaginary part, in: R. Wong (ed.), Asymptotic and Computational Analysis, Marcel Dekker, New York, 1990, pp. 741–749.Google Scholar
  323. 323.
    Yang, T.-S.: On traveling-wave solutions of the Kuramoto-Sivashinsky equation, Physica D 110 (1998), 25–42. Shocks with oscillations, exponentially small in 1/ε, which grow slowly in space, and thus are (very!) nonlocal. Applies the Akylas-Yang beyond-all-orders perturbation method in wavenumber space to compute the far field for oscillatory shocks. These are then matched to the nonlocal regular shocks to create solitary waves (that asymptote to the same constant as x → ±∞); these are confirmed by numerical solutions.Google Scholar
  324. 324.
    Yang, T.-S. and Akylas, T. R.: Radiating solitary waves of a model evolution equation in fluids of finite depth, Physica D 82 (1995), 418–425. Solve the Intermediate-Long Wave (ILW) equation for water waves with an extra third derivative term, which makes the solitary waves weakly nonlocal. The Yang-Akylas matched asymptotics in wavenumber is used to calculate the exponentially small amplitude of the far field oscillations.Google Scholar
  325. 325.
    Yang, T.-S. and Akylas, T. R.: Weakly nonlocal gravity-capillary solitary waves, Phys. Fluids 8 (1996), 1506–1514.Google Scholar
  326. 326.
    Yang, T.-S. and Akylas, T. R.: Finite-amplitude effects on steady lee-wave patterns in subcritical stratified flow over topography, J. Fluid Mech. 308 (1996), 147–170.Google Scholar
  327. 327.
    Yang, T.-S. and Akylas, T. R.: On asymmetric gravity-capillary solitary waves, J. Fluid Mech. 330 (1997), 215–232. Asymptotic analysis of classical solitons of the FKdV equation; demonstrates the coalescence of classical bions.Google Scholar
  328. 328.
    Zinn-Justin, J.: Quantum Field Theory and Critical Phenomena, Oxford University Press, Oxford, 1989.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • John P. Boyd
    • 1
  1. 1.University of MichiganAnn ArborU.S.A.

Personalised recommendations