Advertisement

Plant Molecular Biology

, Volume 39, Issue 6, pp 1267–1274 | Cite as

Engineering seed dormancy by the modification of zeaxanthin epoxidase gene expression

  • Anne Frey
  • Corinne Audran
  • Elena Marin
  • Bruno Sotta
  • Annie Marion-Poll
Article

Abstract

Abscisic acid (ABA) is a plant hormone synthesized during seed development that is involved in the induction of seed dormancy. Delayed germination due to seed dormancy allows long-term seed survival in soil but is generally undesirable in crop species. Freshly harvested seeds of wild-type Nicotiana plumbaginifolia plants exhibit a clear primary dormancy that results in delayed germination, the degree of primary dormancy being influenced by environmental culture conditions of the mother plant. In contrast, seeds, obtained either from ABA-deficient mutant aba2-s1 plants directly or aba2-s1 plants grafted onto wild-type plant stocks, exhibited rapid germination under all conditions irrespective of the mother plant culture conditions. The ABA biosynthesis gene ABA2 of N. plumbaginifolia, encoding zeaxanthin epoxidase, was placed under the control of the constitutive 35S promoter. Transgenic plants overexpressing ABA2 mRNA exhibited delayed germination and increased ABA levels in mature seeds. Expression of an antisense ABA2 mRNA, however, resulted in rapid seed germination and in a reduction of ABA abundance in transgenic seeds. It appears possible, therefore, that seed dormancy can be controlled in this Nicotiana model species by the manipulation of ABA levels.

abscisic acid Nicotiana plumbaginifolia seed dormancy germination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Audran C, Borel C, Frey A, Sotta B, Meyer C, Simmoneau T, Marion-Poll A: Expression studies of the zeaxanthin epoxidase gene in Nicotiana plumbaginifolia. Plant Physiol, in press.Google Scholar
  2. 2.
    Bewley JD: Seed germination and dormancy. Plant Cell 9: 1055–1066 (1997).CrossRefPubMedGoogle Scholar
  3. 3.
    Bouvier F, d'Harlingue A, Hugueney P, Marin E, Marion-Poll A, Camara B: Xanthophyll biosynthesis. J Biol Chem 271: 28861–28867 (1996).PubMedGoogle Scholar
  4. 4.
    Burbidge A, Grieve T, Terry C, Corlett J, Thompson A, Taylor I: Structure and expression of a cDNA encoding zeaxanthin epoxidase, isolated from a wilt-related tomato (Lycopersicon esculentum Mill.) library. J Exp Bot 48: 1749–1750 (1997).Google Scholar
  5. 5.
    Dean C, van den Elzen P, Tamaki S, Dunsmuir P, Bedbrook J: Differential expression of the eight genes of the petunia ribulose bisphosphate carboxylase small subunit multi-gene family. EMBO J 4: 3055–3061 (1985).Google Scholar
  6. 6.
    Gabard J, Marion-Poll A, Chérel I, Meyer C, Müller AJ, Caboche M: Isolation and characterization of Nicotiana plumbaginifolia nitrate reductase-deficient mutants: genetic and biochemical analysis of the NIA complementation group. Mol Gen Genet 209: 596–606 (1987).Google Scholar
  7. 7.
    Groot SPC, van Yperen I, Karssen CM: Strongly reduced levels of endogenous abscisic acid in developing seeds of tomato mutant sitiens do not influence in vivo accumulation of dry matter and storage proteins. Physiol Plant 81: 73–78 (1991)CrossRefGoogle Scholar
  8. 8.
    Groot SPC, Karssen C: Dormancy and germination of abscisic acid-deficient tomato seeds. Plant Physiol 99: 952–958 (1992).Google Scholar
  9. 9.
    Hilhorst HWM, Karssen CM: Seed dormancy and germination: the role of abscisic acid and gibberellins and the importance of hormone mutants. Plant Growth Reg 11: 225–238 (1992).Google Scholar
  10. 10.
    Hilhorst HWM, Downie B: Primary dormancy in tomato (Lycopersicon esculentum cv. Moneymaker): studies with the sitiens mutant. J Exp Bot 47: 89–97 (1995).Google Scholar
  11. 11.
    Hilhorst HWM, Toorop PE: Review on dormancy, germinability, and germination in crop and weed seeds. Adv Agron 61: 112–165 (1997).Google Scholar
  12. 12.
    Ingram J, Bartels D: The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 377–403 (1996).CrossRefPubMedGoogle Scholar
  13. 13.
    Karssen CM, Brinkhorst-van der Swan DLC, Breekland AE, Koornneef M: Induction of seed dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 157: 158–165 (1983).Google Scholar
  14. 14.
    Koornneef M, Hanhart CJ, Hilhorst HWM, Karssen CM: In vivo inhibition of seed development and reserve protein accumulation in recombinants of abscisic acid biosynthesis and responsiveness mutants in Arabidopsis thaliana. Plant Physiol 90: 463–469 (1989).Google Scholar
  15. 15.
    Koornneef M, Léon-Kloosterziel KM, Schwartz SH, Zeevaart JAD: The genetic and molecular dissection of abscisic acid biosynthesis and signal transduction in Arabidopsis. Plant Physiol Biochem 36: 83–89 (1998).Google Scholar
  16. 16.
    Kraepiel Y, Rousselin P, Sotta B, Kerhoas L, Einhorn J, Caboche M, Miginiac M: Analysis of phytochrome-and ABAdeficient mutants suggests that ABA degradation is controlled by light in Nicotiana plumbaginifolia. Plant J 6: 665–661 (1994).Google Scholar
  17. 17.
    Leung J, Giraudat J: Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49: 199–222 (1998).PubMedGoogle Scholar
  18. 18.
    Li B, Foley ME: Genetic and molecular control of seed dormancy. Trends Plant Sci 2: 384–389 (1997).Google Scholar
  19. 19.
    Maiti IB, Murphy JF, Shaw JG, Hunt AG: Plants that express a potyvirus VPg-proteinase gene are resistant to virus infection. Proc Natl Acad Sci USA 90: 6110–6114 (1993).PubMedGoogle Scholar
  20. 20.
    Marin E, Nussaume L, Quesada A, Gonneau M, Sotta B, Hugueney P, Frey A, Marion-Poll A: Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to ABA locus of Arabidopsis thaliana. EMBO J 15: 2331–2342 (1996).PubMedGoogle Scholar
  21. 21.
    McCarty DR: Genetic control and integration of maturation and germination pathways in seed development. Annu Rev Plant Physiol Plant Mol Biol 46: 71–73 (1995).CrossRefGoogle Scholar
  22. 22.
    Merlot S, Giraudat J: Genetic analysis of abscisic acid signal transduction. Plant Physiol 114: 751–757 (1997).PubMedGoogle Scholar
  23. 23.
    Nambara E, Naito S, McCourt PA: A mutant of Arabidopsis which is defective in seed development and storage protein accumulation is a new abi3 allele. Plant J 2: 435–441 (1992).Google Scholar
  24. 24.
    Neill SJ, Horgan R, Parry AD: The carotenoid and abscisic acid content of viviparous kernels and seedlings of Zea mays L. Planta 169: 87–96 (1986).Google Scholar
  25. 25.
    Paiva R, Kriz AL: Effect of abscisic acid on embryo-specific gene expression during normal and precocious germination in normal and viviparous maize (Zea mays) embryos. Planta 192: 332–339 (1994).CrossRefGoogle Scholar
  26. 26.
    Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J: Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6: 1567–1582 (1994).CrossRefPubMedGoogle Scholar
  27. 27.
    Phillips J, Artsaenko O, Fiedler U, Horstman C, Mock HP, Müntz K, Conrad U: Seed-specific immunomodulation of abscisic acid activity induces a developmental switch. EMBO J 16: 4489–4496 (1997).PubMedGoogle Scholar
  28. 28.
    Rock CD, Zeevaart JAD: The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc Natl Acad Sci USA 88: 7496–7499 (1991).PubMedGoogle Scholar
  29. 29.
    Rock CD, Quatrano RS: The role of hormones during seed development. In: Davies PJ (ed) Plant Hormones, pp. 671–6. Kluwer Academic Publishers, Dordrecht, Netherlands (1995).Google Scholar
  30. 30.
    Rousselin P, Kraepiel Y, Maldiney R, Miginiac E, Caboche M: Characterization of three hormone mutants of Nicotiana plumbaginifolia: evidence for a common ABA deficiency. Theor Appl Genet 85: 213–221 (1992).CrossRefGoogle Scholar
  31. 31.
    Schwartz SH, Tan BC, Gage DA, Zeevaart JAD, McCarty DR: Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276: 1872–1874 (1997).PubMedGoogle Scholar
  32. 32.
    Shinozaki K, Yamaguchi-Shinozaki K: Gene expression and signal transduction in water-stress response. Plant Physiol 115: 327–334 (1997).PubMedGoogle Scholar
  33. 33.
    Tan BC, Schwartz SH, Zeevaart JAD, McCarty DR: Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci USA 94: 12235–12240 (1997).PubMedGoogle Scholar
  34. 34.
    Taylor IB, Tarr AR: Phenotypic interactions between abscisic acid deficient tomato mutants. Theor Appl Genet 68: 115–119 (1984).Google Scholar
  35. 35.
    Verwoerd TC, Dekker BMM, Hoekema A: A small-scale procedure for the rapid isolation of plant RNAs. Nucl Acids Res 17: 2362 (1989).PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Anne Frey
    • 1
  • Corinne Audran
    • 1
  • Elena Marin
    • 1
  • Bruno Sotta
    • 2
  • Annie Marion-Poll
    • 1
  1. 1.Laboratoire de Biologie Cellulaire, INRAVersailles CedexFrance
  2. 2.Laboratoire de Physiologie du Développement des Plantes, UMR de Physiologie Cellulaire et Moléculaire des PlantesUniversité Pierre et Marie Curie, tour 53 (E5, casier 156)Paris Cedex 05France

Personalised recommendations