Plant Molecular Biology

, Volume 39, Issue 6, pp 1165–1173 | Cite as

Quantitative chromosome map of the polyploid Saccharum spontaneum by multicolor fluorescence in situ hybridization and imaging methods

  • Sen Ha
  • Paul H. Moore
  • Don Heinz
  • Seiji Kato
  • Nobuko Ohmido
  • Kiichi Fukui
Article

Abstract

Somatic chromosomes of a wild relative of sugarcane (Saccharum spontaneum L.) anther culture-derived clone (AP 85-361, 2n=32) were identified and characterized by computer-aided imaging technology and molecular cytological methods. The presence of four satellite chromosomes and four nearly identical chromosome sets suggests that the clone is a tetrahaploid with the basic number x=8. A quantitative chromosome map, or idiogram, was developed using image analysis of the condensation pattern (CP) at the prometaphase stage of somatic chromosomes. The 45S and 5S ribosomal RNA gene (rDNA) loci were simultaneously visualized by multi-color fluorescence in situ hybridization (McFISH) and precisely localized to the regions of 3p3.1 and 6q1.3 on the idiogram. The simultaneous visualization of two sets of four ribosomal RNA genes confirms tetraploidy of this clone. This conclusion is consistent with results of molecular marker mapping. The quantitative chromosome map produced will become the foundation for genome analyses based on chromosome identity and structure. Previously impossible identification of small chromosomes and untestable hypotheses about the polyploid nature of plants can now be settled with these two approaches of quantitative karyotyping and FISH.

condensation pattern image analysis multi-color FISH of 45S and 5S rDNAs polyploidy quantitative chromosome map Saccharum spontaneum L. wild sugarcane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Janabi SM, Honeycutt RJ, McClelland M, Sobral BWS: A genetic linkage map of Saccharum spontaneum L. 'SES 208'. Genetics 134: 1249–1260 (1993).PubMedGoogle Scholar
  2. 2.
    Bremer G: Problems in breeding and cytology of sugarcane. Euphytica 10: 59–78 (1961).Google Scholar
  3. 3.
    Da Silva JAG, Honeycutt RJ, Burnquist WL, Al-Janabi SM, Sorrells ME, Tanksley SD, Sobral, BWS: Saccharum spontaneum. L. SES 208 genetic map combing RFLP and PCR-based markers. Mol Breed 1: 165–179 (1995).Google Scholar
  4. 4.
    Da Silva JAG, Sorrells ME, Burnquist WL, Tanksley SD: RFLP linkage map and genome analysis of Saccharum spontaneum. Genome 36: 782–791 (1993).Google Scholar
  5. 5.
    Darlington CD, Janaki-Ammal EK: Chromosome Atlas of Flowering Plants. pp. 421–422. Allen & Unwin, London (1945).Google Scholar
  6. 6.
    D'Hont A, Grivet L, Feldmann P, Rao P, Berding N, Glaszmann JC: Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet 250: 405–413 (1996).PubMedGoogle Scholar
  7. 7.
    D'Hont A, Ison D, Alix K, Roux C, Glaszmann JC: Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 41: 221–225 (1998).Google Scholar
  8. 8.
    D'Hont A, Rao P, Feldmann P, Grivet L, Islam-Faridi N, Taylor P, Glaszmann JC: Identification and characterisation of intergeneric hybrids, S. officinarum × Erianthus arundinaceus, with molecular markers and in situ hybridization. Theor Appl Genet 91: 320–326 (1995).Google Scholar
  9. 9.
    Fitch MM, Moore PH: Haploid production from anther culture of Saccharum spontaneum L. Z Pflanzenphysiol 109: 197–206 (1983).Google Scholar
  10. 10.
    Fukui K: Standardization of karyotyping plant chromosomes by a newly developed chromosome image analyzing system (CHIAS). Theor Appl Genet 72: 27–32 (1986).Google Scholar
  11. 11.
    Fukui K: Plant chromosomes at mitosis. In: Fukui K, Nakayama S (eds) Plant Chromosomes: Laboratory Methods, pp. 1–17. CRC Press, Boca Raton, FL (1996).Google Scholar
  12. 12.
    Fukui K, Iijima K: Somatic chromosome map of rice by imaging methods. Theor Appl Genet 81: 589–596 (1991).Google Scholar
  13. 13.
    Fukui K, Kakeda K: Quantitative karyotyping of barley chromosomes by image analysis methods. Genome 33: 450–458 (1990).Google Scholar
  14. 14.
    Fukui K, Kamisugi Y: Mapping of C-banded Crepis chromosomes by imaging methods. Chromosome Res 3: 79–86 (1995).PubMedGoogle Scholar
  15. 15.
    Fukui K, Kamisugi Y, Sakai F: Physical mapping of 5S rDNA loci by direct cloned biotinylated probes in barley chromosomes. Genome 37: 105–111 (1994).PubMedGoogle Scholar
  16. 16.
    Grivet L, D'Hont A, Roques D, Feldmann P, Lanaud C, Glaszmann JC: RFLP mapping in cultivated sugarcane (Saccharum spp): Genome organization in a highly polyploid and aneuploid interspecific hybrid. Genetics 142: 987–1000 (1966)Google Scholar
  17. 17.
    Gould FW: Grass Systematics, p. 2. McGraw Hill, New York (1968)Google Scholar
  18. 18.
    Kamisugi Y, Furuya N, Iijima K, Fukui K: Computer-aided automatic identification of rice chromosomes by image parameters. Chromosome Res 1: 189–196 (1993).PubMedGoogle Scholar
  19. 19.
    Kato S, Fukui K: Condensation pattern (CP) analysis using a newly developed chromosome image analyzing system (CHIAS III). Chromosome Res 6: 473–479 (1998).PubMedGoogle Scholar
  20. 20.
    Kato S, Hirose T, Akiyama Y, O'Neill CM, Fukui K: Manual on the chromosome image analyzing system III, CHIAS III. Res Rep Agric Devel Hokuriku Area 36: 1–76 (1997).Google Scholar
  21. 21.
    Moore PH, Fitch MMM: Sugarcane (Saccharum spp.) anther culture studies. Biotechnol Agric For 12: 480–497 (1990).Google Scholar
  22. 22.
    Nair MK: Cytogenetics of Saccharum. III. Karyotype analysis and meiosis in S. spontaneum. Nucleus 15: 107–117 (1972).Google Scholar
  23. 23.
    Ohmido N, Fukui K: Cytological studies of African cultivated rice, Oryza glaberrima. Theor Appl Genet 91: 212–217 (1995)Google Scholar
  24. 24.
    Ohmido N, Fukui K: Visual verification of close disposition of rice A-genome specific tandem repeat sequence (TrsA) and telomere sequence. Plant Mol Biol 35: 963–968 (1997).PubMedGoogle Scholar
  25. 25.
    Ohmido N, Akiyama Y, Fukui K: Physical mapping of unique nucleotide sequences on identified rice chromosomes. Plant Mol Biol 38: 1081–1087 (1998).PubMedGoogle Scholar
  26. 26.
    Panje RR, Babu CN: Studies in Saccharum spontaneum distribution and geographical association of chromosome numbers. Cytologia 25: 152–172 (1960).Google Scholar
  27. 27.
    Parthasarathy N: Origin of noble sugar-canes (Saccharum officinarum L.). Nature 161: 608 (1948).Google Scholar
  28. 28.
    Raghavan TS: The sugarcanes of India: some cytogenetical considerations. J Hered 42: 199–206 (1951).Google Scholar
  29. 29.
    Sreenivasan TV: Cytogenetical studies in Saccharum spontaneum. Proc Ind Acad Sci 81B: 131–144 (1975).Google Scholar
  30. 30.
    Sreenivasan TV, Ahloowalia BS, Heinz DJ: Cytogenetics. In: Heinz DJ (ed) Sugarcane Improvement through Breeding, pp. 211–253. Elsevier, Amsterdam (1987).Google Scholar
  31. 31.
    Stebbins GL: Variation and Evolution in Plants, pp. 300. Columbia University Press, New York (1950).Google Scholar
  32. 32.
    Stevenson GC: Genetics and Breeding of Sugarcane, pp. 163–212. Longmans, London (1965).Google Scholar
  33. 33.
    Swanson CP: Polyploidy and evolution. In: Cytology and Cytogenetics, pp. 500–517. Prentice-Hall, Englewood Cliffs, NJ (1957).Google Scholar
  34. 34.
    Takaiwa F, Oono K, Sugiura M: The complete nucleotide sequence of a rice 17s rRNA gene. Nucl Acids Res 12: 5441–5448 (1984).PubMedGoogle Scholar
  35. 35.
    Whalen MD: Taxonomy of Saccharum (Poaceae). Baileya 23: 109–125 (1991).Google Scholar
  36. 36.
    Wu KK, Burnquist W, Sorrells ME, Tew TL, Moore PH, Tanksley SD: The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet 83: 294–300 (1992).Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Sen Ha
    • 1
  • Paul H. Moore
    • 2
  • Don Heinz
    • 1
  • Seiji Kato
    • 3
  • Nobuko Ohmido
    • 4
  • Kiichi Fukui
    • 5
  1. 1.Department of Genetics & PathologyHawaii Agriculture Research CenterAieaUSA
  2. 2.U.S. Department of AgricultureAgricultural Research ServiceAieaUSA
  3. 3.Division of BiotechnologyYamanashi Prefecture Agricultural Experiment StationKitakomaJapan
  4. 4.Laboratory Rice Genetic EngineeringHokuriku National Agricultural Experiment StationJoetsuJapan
  5. 5.Department of Biotechnology, Graduate School of EngineeringOsaka University, SuitaOsakaJapan

Personalised recommendations