Advertisement

Environmental Monitoring and Assessment

, Volume 55, Issue 1, pp 7–51 | Cite as

The Bear Brook Watershed, Maine (BBWM), USA

  • S. Norton
  • J. Kahl
  • I. Fernandez
  • T. Haines
  • L. Rustad
  • S. Nodvin
  • J. Scofield
  • T. Strickland
  • H. Erickson
  • P. WigingtonJr.
  • J. Lee
Article

Abstract

The Bear Brook Watershed Manipulation project in Maine is a paired calibrated watershed study funded by the U. S. EPA. The research program is evaluating whole ecosystem response to elevated inputs of acidifying chemicals. The project consists of a 2.5 year calibration period (1987-1989), nine years of chemical additions of (NH4)2SO4 (15N- and 34S-enriched for several years) to West Bear watershed (1989-1998), followed by a recovery period. The other watershed, East Bear, serves as a reference. Dosing is in six equal treatments/yr of 1800 eq SO4 and NH4/ha/yr, a 200% increase over 1988 loading (wet plus dry) for SO4 and 300% for N (wet NO3 + NH4). The experimental and reference watersheds are forested with mixed hard- and softwoods, and have thin acidic soils, areas of 10.2 and 10.7 ha, and relief of 210 m. Thin till of variable composition is underlain by metasedimentary pelitic rocks and calc-silicate gneiss intruded by granite dikes and sills. For the period 1987-1995, precipitation averaged 1.4 m/yr, had a mean pH of 4.5, with SO4, NO3, and NH4 concentrations of 26, 14, and 7 μeq/L, respectively. The nearly perrenial streams draining each watershed have discharges ranging from 0 (East Bear stops flowing for one to two months per year) to 150 L/sec. Prior to manipulation, East Bear and West Bear had a volume weighted annual mean pH of approximately 5.4, alkalinity = 0 to 4 μeq/L, total base cations = 184 μeq/L (sea-salt corrected = 118 μeq/L), and SO4 = 100 to 111 μeq/L. Nitrate ranged from 0 to 30 μeq/L with an annual mean of 6 to 25 μeq/L; dissolved organic carbon (DOC) ranged from 1 to 7 mg/L but was typically less than 3. Episodic acidification occurred at high discharge and was caused by dilution of cations, slightly increased DOC, significantly higher NO3, and the sea-salt effect. Depressions in pH were accompanied by increases in inorganic Al. The West Bear catchment responded to the chemical additions with increased export of base cations, Al, SO4, NO3, and decreased pH, ANC, and DOC. Silica remained relatively constant. Neutralization of the acidifying chemicals occurred dominantly by cation desorption and mobilization of Al.

Keywords

Base Cation Chemical Addition Calibration Period Watershed Study Pelitic Rock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brakke, D. F., Henriksen, A., and Norton, S. A.: 1989, Water Resources Bull. 25, 247–253.Google Scholar
  2. Brakke, D. F., Henriksen, A., and Norton, S. A.: 1990, Verh. Intern. Ver. Limnol. 24, 146–149.Google Scholar
  3. Carpenter, S. R., Frost, T. M., Heisey, D., and Kratz, T. K.: 1989, Ecology. 70, 1142–1152.Google Scholar
  4. Chen, C. W., Gherini, S. A., Dean, J. D., Hudson, R. J. M., and Goldstein, R. A.: 1984, in Schnoor, J. L. (ed.), Modeling of Total Acid Precipitation Impacts. Butterworth Publishers, Boston, 175–203.Google Scholar
  5. Cosby, B. J., Wright, R. F., Hornberger, G. M., and Galloway, J. N.: 1985a, Water Resources Research. 21, 51–63.Google Scholar
  6. Cosby, B. J., Hornberger, G. M., Galloway, J. N., and Wright, R. F.: 1985b, Environ. Sci. Tech. 19, 1144–1149.Google Scholar
  7. Cosby, B. J., Norton, S. A., and Kahl, J. S.: 1996, Sc. Tot. Environ. 183, 49–66.Google Scholar
  8. David, M. B., Fuller, R. D., Fernandez, I. J., Mitchell, M. J., Rustad, L. E., Vance, G. F., Stam, A. C., and Nodvin, S. C.: 1990, Soil Sci. Soc. America J. 54, 541–548.Google Scholar
  9. David, M. B., Vance, G. F., and Kahl, J. S.: 1992, Water Resources Research. 28, 389–396.Google Scholar
  10. Dhamala, B. R., and Mitchell, M. J.: 1995, Canad. J. For. Res. 25, 234–243.Google Scholar
  11. Erickson, H. E., Rustad L. E., Narahara, A. M., and Nodvin, S. C.: 1990a, Watershed Manipulation Project: Field Implementation Plan for 1986–1989: NTIS PB91–148403. U. S. EPA/600/3–91/007. U. S. Environ. Prot. Agency, Washington, DC.Google Scholar
  12. Erickson, H. E., Morrison, M., Kern, J., Hughes, L., Malcolm, J., and Thornton, K.: 1990b, Watershed Manipulation Project: Quality Assurance Implementation Plan for 1986–1989: NTIS PB-148395. U. S. EPA/600/3–91/008. U. S. Environ. Prot. Agency, Washington, DC.Google Scholar
  13. Fernandez, I. J. and Rustad, L. E.: 1990, Water, Air, Soil Poll. 52, 23–39.Google Scholar
  14. Fernandez, I. J., Son, Y., Kraske, C. R., Rustad, L. E., and David, M. B.: 1993, Soil Sc. Soc. Of America J. 57, 1115–1121.Google Scholar
  15. Henriksen, A.: 1984, Verh. Internat. Verein. Limnol. 22, 692–698.Google Scholar
  16. Henriksen, A., Wathne, B. M., Rogeberg, E. J. S., Norton, S. A., and Brakke, D. F.: 1988, Water Research. 22, 1069–1073.Google Scholar
  17. Hornberger, G. M., Germann, P. F., and Bevan, K. J.: 1990, J. Hydrology. 124, 81–99.Google Scholar
  18. Kahl, J. S., Norton, S. A., Haines, T. A., Rochette, E. A., Heath, R. C., and Nodvin, S. C.: 1992, Environ. Poll. 78, 37–44.Google Scholar
  19. Kahl, J. S. and Norton, S. A.: 1993a, Am. Geophys. Union Ann. Mtg., San Francisco.Google Scholar
  20. Kahl, J. S., Haines, T. A., Norton, S. A., and Davis, R. B.: 1993b, Water, Air, Soil Poll. 67, 281–300.Google Scholar
  21. Kahl, J. S. Norton, S. A., Fernandez, I. J., Nadelhoffer, K. J., Driscoll, C. T., and Aber, J. D.: 1993c, Environ. Sci. Tech. 27, 565–568.Google Scholar
  22. Kahl, J. S., Norton, S. A., Fernandez, I. J., and Scofield, J. S.: 1996 (abs.), Amer. Geophys. Union Annual Mtg., Baltimore.Google Scholar
  23. Likens, G. E.: 1985, J. Ecol., 73, 381–396.Google Scholar
  24. McMahon, J. S.: 1990, The Biophysical Regions of Maine. Unpub. M.Sc. Thesis, University of Maine, orono, Maine.Google Scholar
  25. Nadelhoffer, K. J., Aber, J. D., Downs, M. R., Fry, B., and Melillo, J. M.: 1993, in Rasmussen, L. et al. (eds.) Ecosystems Research Report No. 4, Commission of the European Communities, Copenhagen, 64–70.Google Scholar
  26. National Atmospheric Deposition Program (IR-7)/National Trends Network: 1981–1995, Annual Reports: NADP/NTN Coordination Office. Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado.Google Scholar
  27. Nilsson, J.: 1986, Critical loads for sulphus and nitrogen. Nordic Council of Ministers Environmental Report 1986:11, Stockholm, 232p.Google Scholar
  28. Nodvin, S. C, Driscoll, C. T., and Likens, G. E.: 1988, Biogeochemistry. 5, 185–199.Google Scholar
  29. Nodvin, S. C., McAvoy, D. C., Kahl, J. S., Norton, S. A., and Driscoll, C. T.: 1989, Amer. Geophys. Union Chapman Conf., Bar Harbor, Maine.Google Scholar
  30. Norton, S. A. and Henriksen, A.: 1983, Vatten. 39, 346–354.Google Scholar
  31. Norton, S. A., Kahl, J. S., Brakke, D. F., Brewer, G. F., Haines, T. A., and Nodvin, S. C.: 1988, Science of the Total Environ. 72, 183–196.Google Scholar
  32. Norton, S. A., Wright, R. F., Kahl, J. S., and Scofield, J. P.: 1992, Environ. Poll. 77, 123–128.Google Scholar
  33. Norton, S. A., Kahl, J. S., Fernandez, I. J., Scofield, J. P., Rustad, L. E., Haines, T. A., and Lee, J. J.: 1993, in Rasmussen, L., et al. (eds.), Ecosystems Research Report No. 4. Commission of the European Communities, Copenhagen, 55–63.Google Scholar
  34. Norton, S. A., Kahl, J. S., Fernandez, I. J., Rustad, L. E., Scofield, J. P., and Haines, T. A.: 1994, Forest Ecology and Management. 68, 61–73.Google Scholar
  35. Norton, S. A. and Kahl, J. S.: in press (1999), Verh. Int.Ver. Limnol. Google Scholar
  36. Osberg, P. H., Hussey, A. M., Boone, G. M.: 1985, Bedrock Geologic Map of Maine: 1:500,000. Maine Geological Survey, Augusta, Maine.Google Scholar
  37. Postek, K. M., Driscoll, C. T., Kahl, J. S., and Norton, S. A.: 1995, Water, Air, and Soil Poll. 85, 1733–1738.Google Scholar
  38. Reuss, J. O. and Johnson, D. W.: 1986, Acid Deposition and the Acidification of Soils. Springer-Verlag, New York.Google Scholar
  39. Rustad, L. E., Fernandez, I. J., Fuller, R. D., David, M. B., Halteman, W. A., and Nodvin, S. C.: 1993, Agric., Ecosystem, and Environ. 47, 117–134.Google Scholar
  40. Rustad, L. E., Kahl, J. S., Norton, S. A., and Fernandez, I. J.: 1994, J. Hydrology. 162, 319–336.Google Scholar
  41. Schnoor, J. L., Palmer, W. D., Jr., and Glass, G. E.: 1984, in Schnoor, J. L. (ed.), Modeling of Total Acid Precipitation Impacts. Butterworth Publishers, Boston, 155–173.Google Scholar
  42. Stam, A. C., Mitchell, M. J., Krouse, H. R., and Kahl, J. S.: 1992,: Water Resources Research. 28, 231–236.Google Scholar
  43. Strickland, T. C. and Wildensee, F.: 1993, in Rasmussen, L. et al. (eds.). Ecosystems Research Report No. 4, Commission of the European Communities, Copenhagen, 134–136.Google Scholar
  44. Thompson, W. B. and Borns, H. W., Jr.: 1985, Surficial Geologic Map of Maine: 1:500,000. Maine Geological Survey, Augusta, Maine.Google Scholar
  45. Uddameri, V., Norton, S. A., Kahl, J. S., and Scofield, J. P.: 1995, Water, Air, and Soil Poll. 79, 131–146.Google Scholar
  46. Vance, G. F. and David, M. B.: 1991, Geochim. et Cosmoch. Acta. 55, 3611–3625.Google Scholar
  47. Wright, R. F., Norton, S. A., Brakke, D. F., and Frogner, T.: 1988, Nature. 334, 422–424.Google Scholar
  48. Wright, R. F.: 1989, Water, Air, Soil Poll., 46, 251–259.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • S. Norton
  • J. Kahl
  • I. Fernandez
  • T. Haines
  • L. Rustad
  • S. Nodvin
  • J. Scofield
  • T. Strickland
  • H. Erickson
  • P. WigingtonJr.
  • J. Lee

There are no affiliations available

Personalised recommendations