Photosynthesis Research

, Volume 57, Issue 2, pp 117–128

Photoinduced electron transfer and cytochrome content in obligate aerobic phototrophic bacteria from genera Erythromicrobium, Sandaracinobacter, Erythromonas, Roseococcus and Erythrobacter

  • Vladimir Yurkov
  • Barbara Schoepp
  • André Verméglio


The photosynthetic apparatus and the electron carriers of seven species of five different genera of obligate aerobic phototrophic bacteria have been characterized by biochemical and biophysical techniques. A tetrahemic reaction center (RC) bound cytochrome (cyt) was found in Erythromonas (Em.) ursincola, Sandaracinobacter (S.) sibiricus and Roseococcus (R.) thiosulfatophilus, but not in Erythromicrobium (E.) ezovicum, Erythromicrobium ramosum, Erythromicrobium hydrolyticum and Erythrobacter (Eb.) litoralis. In none of the studied species, photochemical activity was observed under anaerobic conditions. Under aerobic conditions, the photoinduced cyclic electron transfer involves a soluble c-type cyt for the seven species. The cyt content of soluble and membrane fractions is highly dependent upon the species. The Erythromicrobium species (E. ezovicum, E. ramosum and E. hydrolyticum) contains a major soluble cyt while the other species possess several soluble cyts, up to four in the case of Eb. litoralis. These cyts have been characterized in terms of midpoint potential and apparent molecular mass. The presence of cyt bc1 complexes has been clearly detected in Eb. litoralis, E. hydrolyticum, E. ezovicum and E. ramosum. These last three species also contain a high midpoint potential (350 mV) membrane-bound cyt c of unknown function.

aerobic phototrophic bacteria cytochrome electron transfer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bowyer JR and Crofts AR (1981) On the mechanism of photosynthetic electron transfer in Rhodopseudomonas capsulata and Rhodopseudomonas sphaeroides. Biochim Biophys Acta 636: 218–233Google Scholar
  2. Coremans JMCC, van der Wal AN, van Grondelle RA, Mesz J and Knaff DB (1985) The pathway of cyclic electron transport in chromatophores of Chromatium vinosum, evidence for a Q-cycle mechanism. Biochim Biophys Acta 807: 134–142Google Scholar
  3. Drepper F, Dorlet P and Mathis P (1997) Cross-linked electron transfer between cytochrome c 2 and the photosynthetic reaction center of Rhodobacter sphaeroides Biochemistry 36: 1418–1427Google Scholar
  4. Evans ER, Fleischman DE, Calvert HE, Pyati PV, Alter G and Subba Rao NS (1990) Bacteriochlorophyll and photosynthetic reaction centers in Rhizobium strain BTAi1. Appl Environ Microbiol 56: 3445–3449Google Scholar
  5. Fuerst JA, Hawkins JA, Holmes A, Sly LI, Moore CI and Stackebrandt E (1993) Porphyrobacter neustonnensis gen. nov., sp. nov., an aerobic bacteriochlorophyll-synthesizing budding bacterium from freshwater. Int J Syst Bacteriol 43: 125–134Google Scholar
  6. Garcia D, Richaud P and Verméglio A (1993) The photoinduced cyclic electron transfer in whole cells of Rhodopseudomonas viridis. Biochim Biophys Acta 1144: 295–301Google Scholar
  7. Garcia D, Richaud P, Breton J and Verméglio A (1994) Structure and function of the tetraheme cytochrome associated to the reaction center of Roseobacter denitrificans. Biochimie 76: 666–673Google Scholar
  8. Harashima K, Nakagawa M and Murata N (1982) Photochemical activity of bacteriochlorophyll in aerobically grown cells of heterotrophs, Erythrobacter species (OCh114) and Erythrobacter longus (OCh101). Plant Cell Physiol 23: 185–193Google Scholar
  9. Hochkoeppler A, Ciurli S, Venturoli G and Zannoni D (1995) The high potential iron-sulfur protein (HiPIP) from Rhodoferax fermentans is competent in photosynthetic electron transfer. FEBS Lett 357: 70–74Google Scholar
  10. Hochkoeppler A, Zannoni D, Ciurli S, Meyer TE, Cusanovich MA and Tollin G (1996) Kinetics of photo-induced electron transfer from high-potential iron-sulfur protein to the photosynthetic reaction center of the purple phototroph Rhodoferax fermentans. Proc Natl Acad Sci 93: 6998–7002Google Scholar
  11. Hochkoeppler A, Ciurli S, Kofod P, Venturoli G and Zannoni D (1997) On the role of cytochrome c 8 in photosynthetic electron transfer of the purple non–sulfur bacterium Rhodoferax fermentans. Photosynth Res 53: 13–21Google Scholar
  12. Jenney FE, Prince RC and Daldal F (1994) Roles of the soluble cytochrome c 2 and membrane-associated cytochrome c y of Rhodobacter capsulatus in photosynthetic electron transfer. Biochemistry 33: 2496–2502Google Scholar
  13. Jenney FE and Daldal F (1993) A novel membrane associated c-type cytochrome, cyt c y, can mediate the photosynthetic growth of Rhodobacter capsulatus and Rhodobacter sphaeroides. EMBOJ 12: 1283–1292Google Scholar
  14. Joliot P, Béal D and Frilley B (1980) Une nouvelle méthode spectrophotométrique destinée à l'étude des réactions photosynthétiques. J Chim Phys 77: 209–216Google Scholar
  15. Joliot P, Verméglio A and Joliot A (1989) Evidence for supercomplexes between reaction centers, cytochrome c 2 and cytochrome bc 1 complex in Rhodobacter sphaeroides whole cells. Biochim Biophys Acta 975: 336–345Google Scholar
  16. Joliot P, Verméglio A and Joliot A (1990) Electron transfer between primary and secondary donors in Rhodospirillum rubrum: Evidence for a dimeric association of reaction centers. Biochemistry 29: 4355–4361Google Scholar
  17. Jones D and Krieg NR (1989) Serology and chemotaxonomy. In: Krieg NR (ed) Bergey's Manual of Systematic Bacteriology 1989, pp 15–19. Williams and Wilkins, Baltimore/ LondonGoogle Scholar
  18. Jones MR, Mc Ewan AG and Jackson JB (1990) The role of c-type cytochromes in the photosynthetic electron transport pathway of Rhodobacter capsulatus. Biochim Biophys Acta 1019: 59–66Google Scholar
  19. Kramer DM, Kanazawa A and Fleishman D (1997a) Oxygen dependence of photosynthetic electron transport in a bacteriochlorophyll-containing rhizobium. FEBS Lett 417: 275–278Google Scholar
  20. Kramer DM, Schoepp B, Liebl U and Nitschke W (1997b) Cyclic electron transfer in Heliobacillus mobilis involving a menaquinol-oxidizing cytochrome bc complex and an RCI-type reaction center. Biochemistry 36: 4203–4211Google Scholar
  21. Kutoh E and Sone N (1988) Quinol-cytochrome c oxidoreductase from the thermophilic bacterium PS3. J Biol Chem 263: 9020–9026Google Scholar
  22. Matsuura K and Shimada K (1986) Cytochromes functionally associated to photochemical reaction centers in Rhodopseudomonas palustris and Rhodopseudomonas acidophila. Biochim Biophys Acta 852: 9–18Google Scholar
  23. Menin L, Schoepp B, Parot P and Verméglio A (1997) Photoinduced cyclic electron transfer in Rhodocyclus tenuis cells: Participation of HiPIP or cyt c 8 depending on the ambient Redox potential. Biochemistry 36: 12183–12188Google Scholar
  24. Menin L, Gaillard J, Parot P, Schoepp B, Nitschke W and Verméglio A (1998) Role of HiPIP as electron donor to the RC-bound cytochrome in photosynthetic purple bacteria. Photosynth Res (in press)Google Scholar
  25. Meyer TE and Donohue TJ (1995) Cytochromes, iron–sulfur and copper proteins mediating electron transfer from the cyt bc 1 complex to photosynthetic reaction center complexes. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 725–745. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  26. Nagashima KVP, Hiraishi A, Shimada K and Matsura K(1994) Phylogenetic analysis of photosynthetic reaction centers of purple bacteria, p 58. VIII Int Symp Phototrophic ProkaryotesGoogle Scholar
  27. Nitschke W and Dracheva SM (1995) Reaction Center Associated Cytochromes. In: Blankenship RE, Madigan CE and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 747–774. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  28. Okamura K, Takamiya K and Nishimura M (1984) Photosynthetic and respiratory electron transfer systems in an aerobic photosynthetic bacterium Erythrobacter sp. strain OCh114. Adv Photosynth Res 1: 641–644Google Scholar
  29. Okamura K, Takamiya K and Nishimura M (1985) Photosynthetic electron transfer system is inoperative in anaerobic cells of Erythrobacter species strain OCh114. Arch Microbiol 142: 12–17Google Scholar
  30. Okamura K, Mitsumori F, Ito O, Takamiya KT and Nishimura M (1986) Photophosphorylation and oxidative phosphorylation in intact cells and chromatophores of an aerobic photosynthetic bacterium, Erythrobacter sp. strain OCh114. J Bacteriol 168: 1142–1146Google Scholar
  31. Osyczka A, Yoshida M, Nagashima KVP, Shimada K and Matsuura K (1997) Electron transfer from high-potential iron–sulfur protein and low-potential cytochrome c-551 to the primary donor of Rubrivivax gelatinosus reaction center mutationally devoided of the bound cytochrome subunit. Biochim Biophys Acta 1321: 93–99Google Scholar
  32. Overfield RE, Wraight CA and De Vault D (1979) Microsecond photoxidation kinetics of cytchrome c 2 from Rhodopseudomonas sphaeroides: In vivo and solution studies FEBS Lett: 105: 137–142Google Scholar
  33. Samyn B, De Smet L, Van Driessche G, Meyer TE, Bartsch RG, Cusanovich MA and Van Beeumen JJ (1996) A high-potential soluble c-551 from the purple phototrophic bacterium Chromatium vinosum is homologous to cytochrome c 8 from denitrifying pseudomonads Eur J Biochem 236: 689–696Google Scholar
  34. Schoepp B (1994) PhD thesis, Paris-Grignon, FranceGoogle Scholar
  35. Schoepp B, Parot P, Menin L, Richaud P and Verméglio A (1995) In vivo participation of a high potential iron sulfur protein as electron donor to the photochemical reaction center of Rubrivivax gelatinosus. Biochemistry 34: 11736–11742Google Scholar
  36. Shiba T (1991) Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans, sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. System Appl Microbiol 14: 140–145Google Scholar
  37. Shiba T and Simidu U (1982) Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int J Syst Bacteriol 32: 211–217Google Scholar
  38. Shimada K (1995) Aerobic Anoxygenic Phototrophs. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 105–122. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  39. Takamiya K (1995) Occurence of cytochrome c-554 in a facultative methylotroph Protaminobacter ruber strain NR-1, during bacteriochlorophyll formation. Arch Microbiol 143: 15–19Google Scholar
  40. Takamiya K, Iba K and Okamura K (1987) Reaction center complex from an aerobic photosynthetic bacterium Erythrobacter species OCh114. Biochim Biophys Acta 890: 127–133Google Scholar
  41. Takamiya K, Arata H, Shioi Y and Doi M (1988) Restoration of the optimal redox state for the photosynthetic electron transfer system by auxiliary oxidants in an aerobic photosynthetic bacterium, Erythrobacter sp. OCh114. Biochim Biophys Acta 935: 26–33Google Scholar
  42. Tiede DM, Vashishta AC and Gunner MR (1993) Electrontransfer kinetics and electrostatic properties of the Rhodobacter sphaeroides reation center and soluble c-cytochromes Biochemistry. 32: 4515–4531Google Scholar
  43. Thomas PE, Ryan D and Lewin W (1976) An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Analyt Biochem 75: 168–176Google Scholar
  44. Trumpower BL (1990) Cytochrome bc 1 complexes of microorganisms. Microbiol Rev 54: 101–129Google Scholar
  45. Urakami T and Komagata K (1984) Protomonas, a new genus of facultatively methylotrophic bacteria. Int J Syst Bacteriol 34: 188–201Google Scholar
  46. Van Grondelle R, Duysens LNM and van der Wal HN (1976) Function of three cytochromes in photosynthesis of whole cells of Rhodospirillum rubrum as studied by flash spectroscopy. Evidence for two types of reaction center. Biochim Biophys Acta 449: 69–187Google Scholar
  47. Yamanaka T (1992) Group c cytochromes, In: Yamanaka T (ed) The Biochemistry of Bacterial Cytochromes-1992, pp 91–168. Japan Sci Societies Press, TokyoGoogle Scholar
  48. Young JPW, Downer HL and Eardly BD (1991) Phylogeny of the phototrophic Rhizobium strain BTAi1 by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. J Bacteriol 173: 2271–2277Google Scholar
  49. Yurkov V and Gorlenko VM (1992) A new genus of freshwater aerobic, bacteriochlorophyll a-containing bacteria, Roseococcus gen. nov. Microbiology (Engl. Transl. Mikrobiologiya) 60: 628–632Google Scholar
  50. Yurkov V and Gorlenko VM (1993) New species of aerobic bacteria from the genus Erythromicrobium containing bacteriochlorophyll a.Microbiology (Engl. Transl. Mikrobiologiya) 61: 163–168Google Scholar
  51. Yurkov V, Gorlenko VM and Kompantseva EI (1992) A new type of freshwater aerobic orange-coloured bacterium, Erythromicrobium gen. nov. containing bacteriochlorophyll a. Microbiology (Engl. Transl. Mikrobio-logiya) 61: 169–172Google Scholar
  52. Yurkov V, Stackebrandt E, Holmes A, Fuerst JA, Hugenholtz P, Golecki J, Gad'on N, Gorlenko VM, Kompantseva EI and Drews G (1994) Phylogenetic positions of novel aerobic bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 44: 427–434Google Scholar
  53. Yurkov V, Stackebrandt E, Buss O, Verméglio A, Gorlenko V and Beatty JT (1997) Reorganization of the genus Erythromicrobium. Description of 'Erythromicrobium sibiricum' and 'Erythromicrobium ursincola' as members of two new independent genera: Sandaracinobacter and Erythromonas. Int J Syst Bacteriol 47: 1172–1178Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Vladimir Yurkov
    • 1
  • Barbara Schoepp
    • 3
  • André Verméglio
    • 1
  1. 1.Laboratoire de Bioénergétique CellulaireCEA/Cadarache, DEVMSt. Paul lez Durance, CedexFrance
  2. 2.Department of Microbiology & Immunology, #The University of British ColumbiaVancouver, BCCanada
  3. 3.Laboratoire d'Ingénierie des Protéines, Centre de Génétique Moléculaire, CNRSGif-sur-Yvette CedexFrance

Personalised recommendations