Plant Molecular Biology

, Volume 38, Issue 1–2, pp 223–246 | Cite as

The role of lipids in plastid protein transport

  • Barry D. Bruce


The elaborate compartmentalization of plant cells requires multiple mechanisms of protein targeting and trafficking. In addition to the organelles found in all eukaryotes, the plant cell contains a semi-autonomous organelle, the plastid. The plastid is not only the most active site of protein transport in the cell, but with its three membranes and three aqueous compartments, it also represents the most topologically complex organelle in the cell. The chloroplast contains both a protein import system in the envelope and multiple protein export systems in the thylakoid. Although significant advances have identified several proteinaceous components of the protein import and export apparatuses, the lipids found within plastid membranes are also emerging as important players in the targeting, insertion, and assembly of proteins in plastid membranes. The apparent affinity of chloroplast transit peptides for chloroplast lipids and the tendency for unsaturated MGDG to adopt a hexagonal II phase organization are discussed as possible mechanisms for initiating the binding and/or translocation of precursors to plastid membranes. Other important roles for lipids in plastid biogenesis are addressed, including the spontaneous insertion of proteins into the outer envelope and thylakoid, the role of cubic lipid structures in targeting and assembly of proteins to the prolamellar body, and the repair process of D1 after photoinhibition. The current progress in the identification of the genes and their associated mutations in galactolipid biosynthesis is discussed. Finally, the potential role of plastid-derived tubules in facilitating macromolecular transport between plastids and other cellular organelles is discussed.

lipid polymorphisms MGDG transit peptides spontaneous insertion thylakoid biogenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allison DS, Schatz G: Artificial mitochondrial presequences. Proc Natl Acad Sci USA 83: 9011–9015 (1986).Google Scholar
  2. 2.
    Antonny B, Bemaud-Dufour S, Chardin P, Chabre M: Nterminal hydrophobic residues of ARF insert into membrane phospholipids upon GDP to GTP exchange. Biochemistry 36: 4675–4684 (1997).Google Scholar
  3. 3.
    Archer EK, Keegstra K: Current views on chloroplast protein import and hypotheses on the origin of the transport mechanism. J Bioenerg Biomembr 22: 789–810 (1990).Google Scholar
  4. 4.
    Ardail D, Privat JP, Egret-Charlier M, Levrat C, Lerme F, Louisot P: Mitochondrial contact sites: lipid composition and dynamics. J Biol Chem 265: 18797–18802 (1990).Google Scholar
  5. 5.
    Aro EM, Virgin I, Andersson B: Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143: 113–134 (1993).Google Scholar
  6. 6.
    Batenburgh AM, van Esch JH, Leunissen-Bijvelt J, Verkleij AJ, de Kruijff B: Interaction of meliten with negatively charged phospholipids: consequences for lipid reorganization. FEBS Lett 223: 148–154 (1987).Google Scholar
  7. 7.
    Berthold J, Bauer MF, Schneider HC, Klaus C, Dietmeier K, Neupert W, Brunner M: The MIM complex mediates preprotein translocation across the mitochondrial inner membrane and couples it to the mt-Hsp70/ATP driving system. Cell 81: 1085–1093 (1995).Google Scholar
  8. 8.
    Block MA, Dorne AJ, Joyard J, Douce R: Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. 11.Biochemical characterization. J Biol Chem 258: 13281–13286 (1983).Google Scholar
  9. 9.
    Boddi B, Lindsten A, Ryberg M, Sundqvist C: On the aggregational states of protochlorophyllide and its protein composition. Physiol Plant 76: 135–143 (1989).Google Scholar
  10. 10.
    Brentel I, Selstam E, Lindblom G: Biochim Biophys Acta 812: 816–826 (1985).Google Scholar
  11. 11.
    Briggs MS, Comell DG, Dluhy RA, Gierasch LM: Conformations of signal peptides induced by lipids suggest initial steps in protein export. Science 233: 206–208 (1986).Google Scholar
  12. 12.
    Briggs MS, Gierasch LM, Zlotnick A, Lear JD, DeGrado VYT: In vivo function and membrane binding properties are correlated for Escherichia coli lamB signal peptides. Science 228: 1096–1099 (1985).Google Scholar
  13. 13.
    Browse J, McConn M, James D, Jr., Miquel M: Mutants of Arabidopsis deficient in the synthesis of alpha-linolenate. Biochemical and genetic characterization of the endoplasmic reticulum linoleoyl desaturase. J Biol Chem 268: 16345–16351 (1993).Google Scholar
  14. 14.
    Browse J, Somerville C: Glycerolipid suynthesis: biochemistry and regulation. Annu Rev Plant Physiol Plant Mol Biol 42: 467–506 (1991).Google Scholar
  15. 15.
    Browse J, Warwick N, Somerville CR, Slack CR: Fluxes through the prokaryotic and eukaryotic pathways of lipid synthesis in the '16:3' plant Arabidopsis thaliana. Biochem J 235: 25–31 (1986).Google Scholar
  16. 16.
    Bruce BD, Keegstra K: Translocation of proteins across chloroplast membranes. In: Barber J (ed) Advances in Molecular and Cell Biology: Molecular Processes of Photosynthesis, pp. 389–430. Jai Press, Greenwich, CT (1994).Google Scholar
  17. 17.
    Chen D, Schnell DJ: Insertion of the 34–kDa chloroplast protein import component, IAP34, into the chloroplast outer membrane is dependent on its intrinsic GTP-binding capacity. J Biol Chem 272: 6614–6620 (1997).Google Scholar
  18. 18.
    Chupin V, van 't Hof R, de Kruijff B: The transit sequence of a chloroplast precursor protein reorients the lipids in MGDG containing bilayers. FEBS Lett 350: 104–108 (1994).Google Scholar
  19. 19.
    Cline K, Keegstra K: Galactosyntransferases involved in galactoplipid biosynthesis are located in the outer membrane of pea chloroplast envelopes Pisum sativum. Plant Physiol 71: 366–372 (1983).Google Scholar
  20. 20.
    Cullis PR, de Kruijff B: Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta 559: 399–420 (1979).Google Scholar
  21. 21.
    Dahlqvist A, Nordstrom S, Karlsson OP, Mannock DA, McElhaney RN, Wieslander A: Efficient modulation of glucolipid enzyme activities in membranes of Acholeplasma laidlawii by the type of lipids in the bilayer matrix. Biochemistry 34: 13381–13389 (1995).Google Scholar
  22. 22.
    de Kruijff B: Polymorphic regulation of membrane llpid composition. Nature 329: 587–588 (1987).Google Scholar
  23. 23.
    De Kruijff B, Verkleij AJ, Leunissen-Bijvelt J, Van Echteld CJ, Hille J, Rijnbout H: Further aspects of the Ca2C-dependent polymorphism of bovine heart cardiolipin. Biochim Biophys Acta 693: 1–12 (1982).Google Scholar
  24. 24.
    Demel RA, Goormaghtigh E, de Kruijff B: Lipid and peptide specificities in signal peptide-lipid interactions in model membranes. Biochim Biophys Acta 1027: 155–162 (1990).Google Scholar
  25. 25.
    Dobberstein B, Blobel G, Chua NH: In vitro synthesis and processing of a putative precursor for the small subunit of ribulose-1,5–bisphosphate carboxylase of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 74: 1082–1085 (1977).Google Scholar
  26. 26.
    Dormann P, Hoffmann-Benning S, Balbo I, Benning C: Isolation and characterization of an Arabidopsis mutant deficient in the thylakoid lipid digalactosyl diacylglycerol. Plant Cell 7: 1801–1810 (1995).Google Scholar
  27. 27.
    Dorne AJ, Block MA, Joyard J, Douce J: The galactolipid: galactolipid galactosyltransferase is located on the outer surface of the outer membrane of the chloroplast envelope. FEBS Lett 145: 30–34 (1982).Google Scholar
  28. 28.
    de Boer AD, Weisbeek PJ: Chloroplast protein topogenesis: import, sorting and assembly. Biochim Biophys Acta 1071: 221–253 (1991).Google Scholar
  29. 29.
    Dowhan W: Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu Rev Biochem 66: 199–232 (1997).Google Scholar
  30. 30.
    Endo T, Kawamura K, Nakai M: The chloroplast-targeting domain of plastocyanin transit peptide can form a helical structure but does not have a high affinity for lipid bilayers. Eur J Biochem 207: 671–675 (1992).Google Scholar
  31. 31.
    Endo T, Schatz G: Latent membrane perturbation activity of a mitochondrial precursor protein is exposed by unfolding. EMBO J 7: 1153–1158 (1988).Google Scholar
  32. 32.
    Epand RM: Modulation of lipid polymorphism by peptides. In: Epand RM (ed) Lipid Polymorphism and Membrane Properties. Current Topics in Membranes, vol. 44, pp. 237–252. Academic Press, San Diego (1997).Google Scholar
  33. 33.
    Fischer K, Weber A, Arbinger B, Brink S, Eckerskorn C, Flugge UI: The 24 kDa outer envelope membrane protein from spinach chloroplasts: molecular cloning, in vivo expression and import pathway of a protein with unusual properties. Plant Mol Biol 25: 167–177 (1994).Google Scholar
  34. 34.
    Fullner KJ, Lara JC, Nester EW: Pilus assembly by Agrobacterium T-DNA transfer genes. Science 273: 1107–1109 (1996).Google Scholar
  35. 35.
    Gaba V, Marder JB, Greenberg BM, Mattoo AK, Edelman M: Degradation of the 32 kD protein in far red light. Plant Physiol 84: 348–352 (1987).Google Scholar
  36. 36.
    Gavel Y, Steppuhn J, Herrmann R, von Heijne G: The 'positive-inside rule'applies to thylakoid membrane proteins. FEBS Lett 282: 41–46 (1991).Google Scholar
  37. 37.
    Gierasch LM: Signal sequences. Biochemistry 28: 923–930 (1989).Google Scholar
  38. 38.
    Gombos Z, Kasnervo E, Tsvetkova N, Sakamoto T, Aro E, Murata N: Genetic enhancement of the ability to tolerate photoinhibition by introduction of unsaturated bonds into membrane glycerolipids. Plant Physiol 115: 551–559 (1997).Google Scholar
  39. 39.
    Gombos Z, Wada H, Murata N: Unsaturation of fatty acids in membrane lipids enhances tolerance of the cyanobacterium Synechocystis PCC6803 to low-temperature photoinhibition. Proc Natl Acad Sci USA 89: 9959–9963 (1992).Google Scholar
  40. 40.
    Gombos Z, Wada H, Murata N: The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipids: a mechanism of chilling tolerance. Proc Natl Acad Sci USA 91: 8787–8791 (1994).Google Scholar
  41. 41.
    Gounaris K, Mannock DA, Sen A, Brain APR, Williams WP, Quinn PJ: Polyunsaturated fatty acyl residues of galactolipids are involved in the control of bilayer/non-bilayer transitions in higher plant chloroplasts. Biochim Biophys Acta 732: 229–242 (1983).Google Scholar
  42. 42.
    Gruner SM: Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. Proc Natl Acad Sci USA 82: 3665–3669 (1985).Google Scholar
  43. 43.
    Hageman J, Baecke C, Ebskamp M, Pilon R, Smeekens S, Weisbeek P: Protein import into and sorting inside the chloroplast are independent processes. Plant Cell 2: 479–494 (1990).Google Scholar
  44. 44.
    Heemskerk JWM, Bogemann G, Helsper JPFG, Wintermans JFGM: Synthesis of mono-and digalactosyldiacylglycerol in isolated spinach chloroplasts. Plant Physiol 86: 971–977 (1988).Google Scholar
  45. 45.
    Heemskerk JWM, Schmidt HL, Hammer U, Heinz E: Biosynthesis and desaturation of prokaryotic galactolipids in leaves and isolated chloroplasts from spinach. Plant Physiol 96: 144–152 (1991).Google Scholar
  46. 46.
    Hirsch S, Muckel E, Heemeyer F, Heijne Gv, Soll J: A receptor component of the chloroplast protein translocation machinery. Science 266: 1989–1992 (1994).Google Scholar
  47. 47.
    Horniak L, Pilon M, van 't Hof R, de Kruijff B: The secondary structure of the ferredoxin transit sequence is modulated by its interaction with negatively charged lipids. FEBS Lett 334: 241–246 (1993).Google Scholar
  48. 48.
    Hoyt DW, Cyr DM, Gierasch LM, Douglas MG: Interaction of peptides corresponding to mitochondrial presequences with membranes. J Biol Chem 266: 21693–21999 (1991).Google Scholar
  49. 49.
    Hsieh CH, Sue SC, Lyu PC, Wu WG: Membrane packing geometry of diphytanoylphosphatidylcholine is highly sensitive to hydration: phospholipid polymorphism induced by molecular rearrangement in the headgroup region. Biophys J 73: 870–877 (1997).Google Scholar
  50. 50.
    Hui SW: Curvature stress and biomembrane function. In: Epand RM (ed) Lipid Polymorphism and Membrane Properties. Current Topics in Membranes, vol 44, pp. 541–563. Academic Press, San Diego (1998).Google Scholar
  51. 51.
    Hui SW, Sen A: Effects of lipid packing on polymorphic phase behavior and membrane properties. Proc Natl Acad Sci USA 86: 5825–5829 (1989).Google Scholar
  52. 52.
    Israelachvili JN, Mitchell DJ: A model for the packing of lipids in bilayer membranes. Biochim Biophys Acta 389: 13–19 (1975).Google Scholar
  53. 53.
    Jacob JS, Miller KR: The effects of galactolipid depletion on the structure of a photosynthetic membrane. J Cell Biol 103: 1337–1347 (1986).Google Scholar
  54. 54.
    Jamieson GR, Reid EH: The occurance of hexadeca-7,19,13–trienoic acid in the leaf lipids of angiosperms. Phytochemistry 10: 1837–1843 (1971).Google Scholar
  55. 55.
    Joyard J, Block MA, Douce R: Molecular aspects of plastid envelope biochemistry. Eur J Biochem 199: 489–509 (1991).Google Scholar
  56. 56.
    Karlsson OP, Rytomaa M, Dahlqvist A, Kinnunen PK, Wieslander A: Correlation between bilayer lipid dynamics and activity of the diglucosyldiacylglycerol synthase from Acholeplasma laidlawii membranes. Biochemistry 35: 10094–10102 (1996).Google Scholar
  57. 57.
    Keegstra K: A new hypothesis for the mechanism of protein translocation into chloroplasts. In: Briggs W (ed) Photosynthesis, pp. 347–357. Alan R. Liss, New York (1989).Google Scholar
  58. 58.
    Kerber B, Soll J: Transfer of a chloroplast-bound precursor protein into the translocation apparatus is impaired after phospholipase C treatment. FEBS Lett 306: 71–74 (1992).Google Scholar
  59. 59.
    Kessler F, Blobel G, Patel HA, Schnell DJ: Identification of two GTP-binding proteins in the chloroplast protein import machinery. Science 266: 1035–1039 (1994).Google Scholar
  60. 60.
    Kiebler M, Pfaller R, Sollner T, Griffiths G, Horstmann H, Pfanner N, Neupert W: Identification of a mitochondrial receptor complex required for recognition and membrane insertion of precursor proteins. Nature 348: 610–616 (1990).Google Scholar
  61. 61.
    Killian JA, de Jong AM, Bijvelt J, Verkleij AJ, de Kruijff B: Induction of non-bilayer lipid structures by functional signal peptides. EMBO J 9: 815–819 (1990).Google Scholar
  62. 62.
    Killian JA, Koorengevel MC, Bouwstra JA, Gooris G, Dowhan W, de Kruijff B: Effect of divalent cations on lipid organization of cardiolipin isolated from Escherichia coli strain AH930. Biochim Biophys Acta 1189: 225–232 (1994).Google Scholar
  63. 63.
    Kim SJ, Robinson D, Robinson C: An Arabidopsis thaliana cDNA encoding PS II-X, a 4.1 kDa component of photosystem II: a bipartite presequence mediates SecA/delta pH-independent targeting into thylakoids. FEBS Lett 390: 175–178 (1996).Google Scholar
  64. 64.
    Klosgen RB: Protein transport into and across the thylakoid membrane. J Photochem Photobiol 38: 1–9 (1997).Google Scholar
  65. 65.
    Kohler R, Cao J, Zipfel WR, Webb WW, Hanson MR: Exchange of protein molecules through connections between higher plant plastids. Science 276: 2039–2042 (1997).Google Scholar
  66. 66.
    Kuhn A: Major coat proteins of bacteriophage Pf3 and M13 as model systems for Sec-independnet protein transport. FEMS Micro Rev 17: 185–190 (1995).Google Scholar
  67. 67.
    Kuhn A, Rohrer J, Gallusser A: Bacteriophages M13 and Pf3 tell us how proteins insert into the membrane. J of Structural Biology 104: 38–43 (1990).Google Scholar
  68. 68.
    Landau EM, Rosenbusch JP: Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci USA 93: 14532–14535 (1996).Google Scholar
  69. 69.
    Landh T: From entangled membranes to eclectic morphologies: cubic membranes as subcellular space organizers. FEBS Lett 369: 13–17 (1995).Google Scholar
  70. 70.
    Leenhouts JM, de Gier J, de Kruijff B: A novel property of a nlitochondrial presequence. Its ability to induce cardiolipinspecific interbilayer contacts which are dissociated by a transmembrane potential. FEBS Lett 327: 172–176 (1993).Google Scholar
  71. 71.
    Leenhouts JM, Torok Z, Demel RA, de Gier J, de Kruijff B: The full length of a mitochondrial presequence is required for efficient monolayer insertion and interbilayer contact formation. Mol Membr Biol 11: 159–164 (1994).Google Scholar
  72. 72.
    Lewis R, Mannock DA, McElhaney RN: Membrane lipid molecular structure and polymorphism. In: Epand, RM (ed) Lipid Polymorphism and Membrane Properties. Current Topics in Membranes, vol 44, pp. 25–102. Academic Press, San Diego (1997).Google Scholar
  73. 73.
    Li H, Chen LJ: Protein targeting and integration signal for the chloroplastic outer envelope membrane. Plant Cell 8: 2117–2126 (1996).Google Scholar
  74. 74.
    Li H, Chen LJ: A novel chloroplastic outer membranetargeting signal that functions at both termini of passenger polypeptides. J Biol Chem 272: 10968–10974 (1997).Google Scholar
  75. 75.
    Li H, Moore T, Keegstra K: Targeting of proteins to the outer envelope membrane uses a different pathway than transport into chloroplasts. Plant Cell 3: 709–717 (1991).Google Scholar
  76. 76.
    Lorkovic ZJ, Schroder WP, Pakrasi HB, Irrgang KD, Herrmann RG, Oelmuller R: Molecular characterization of PsbW, a nuclear-encoded component of the photosystem II reaction center complex in spinach. Proc Natl Acad Sci USA 92: 8930–8934 (1995).Google Scholar
  77. 77.
    Luzzati V: Biological significance of lipid polymorphism: the cubic phases. Curr Opin Struct Biol 7: 661–668 (1997).Google Scholar
  78. 78.
    Luzzati V, Delacroix H, Gulik A, Gulik-Kryzwicki T, Mariani P, Vargas R: The cubic phases of lipids. In: Epand RM (ed) Lipid Polymorphism and Membrane Properties. Current Topics in Membranes, vol 44, pp. 3–24. Academic Press, San Diego (1998).Google Scholar
  79. 79.
    Luzzati V, Vargas R, Gulik A, Mariani P, Seddon JM, Rivas E: Lipid polymorphism: a correction. The structure of the cubic phase of extinction symbol Fd-consists of two types of disjointed reverse micelles embedded in a three-dimensional hydrocarbon matrix. Biochemistry 31: 279–285 (1992).Google Scholar
  80. 80.
    Mannock DA, Brian APR, Williams WP: Biochim Biophys Acta 817: 289–298 (1985).Google Scholar
  81. 81.
    Marechal E, Block MA, Dorne AJ, Douce R, Joyard J: Lipid synthesis and metabolism in the plastid envelope. Physiol Plant 100: 65–77 (1997).Google Scholar
  82. 82.
    Marechal E, Block MA, Joyard J, Douce R: Comparison of the kinetic properties of MGDG synthase in mixed micelles and in envelope membranes from spinach chloroplast. FEBS Lett 352: 307–310 (1994).Google Scholar
  83. 83.
    Marechal E, Block MA, Joyard J, Douce R: Kinetic properties of monogalactosyldiacylglycerol synthase from spinach chloroplast envelope membranes. J Biol Chem 269: 5788–5798 (1994).Google Scholar
  84. 84.
    Mattoo AK, Hoffman-Falk H, Marder JB, Edelman M: Regulation of protein metabolism: coupling of photosynthetic electron transport to in vivo degradation of the rapidly metabolized 32–kilodalton protein of the chloroplast membranes. Proc Natl Acad Sci USA 81: 1389–1384 (1984).Google Scholar
  85. 85.
    Mattoo AK, Marder JB, Edelman M: Dynamics of the photosystem II reaction center. Cell 56: 241–246 (1989).Google Scholar
  86. 86.
    Mattoo AK, Pick U, Hoffman-Falk H, Edelman M: The rapidly metabolized 32,000–dalton polypeptide of the chloroplast is the 'proteinaceous shield' regulating photosystem II electron transport and mediating diuron herbicide sensitivity. Proc Natl Acad Sci USA 78: 1572–1576 (1981).Google Scholar
  87. 87.
    Mayer A, Nargang FE, Neupert W, Lill R: MOM22 is a receptor for mitochondrial targeting sequences and cooperates with MOM19. EMBO J 14: 4204–4211 (1995).Google Scholar
  88. 88.
    McConn M, Browse J: The critical requirement for linolenic acid is pollen development, not photosynthesis, ion an Arabidopsis mutant. Plant Cell 8: 403–416 (1996).Google Scholar
  89. 89.
    Mclntosh TJ: Hydration properties of lamellar and non-lamellar phases of phosphatidylcholine and phosphatidylethanolamine. Chem Phys Lipids 81: 117–131 (1996).Google Scholar
  90. 90.
    McLean B, Whatley JM, Juniper BE: Continuity of chloroplast and endoplasmic reticulum membranes in Chara and Equisetum. New Phytol 109: 59–65 (1988).Google Scholar
  91. 91.
    Michl D, Robinson C, Shackleton JB, Herrmann RG, Klosgen RB: Targeting of proteins to the thylakoids by bipartite presequences: CFoII is imported by a novel, third pathway. EMBO J 13: 1310–1317 (1994).Google Scholar
  92. 92.
    Minami E, Shinohara K, Kuwabara T, Watanabe A: In vitro synthesis and assembly of photosystem II proteins of spinach chloroplasts. Arch Biochem Biophys 244: 517–527 (1986).Google Scholar
  93. 93.
    Minami E, Watanabe A: Thylakoid membranes: the translational site of chloroplast DNA-regulated thylakoid polypeptides. Arch Biochem Biophys 235: 562–570 (1984).Google Scholar
  94. 94.
    Miquel M, Browse J: Arabidopsis mutants deficient in polyunsaturated fatty acid synthesis. Biochemical and genetic characterization of a plant oleoyl-phosphatidylcholine desaturase. J Biol Chem 267: 1502–1509 (1992).Google Scholar
  95. 95.
    Nixon PJ, Trost JT, Diner BA: Role of the carboxy terminus of polypeptide D1 in the assembly of a functional water-oxidizing manganese cluster in photosystem II of the cyanobacterium Synechocystis sp. PCC 6803: assembly requires a free carboxyl group at C-terminal position 344. Biochemistry 31: 10859–10871 (1992).Google Scholar
  96. 96.
    Pebay-Peyroula E, Rummel G, Rosenbusch JP, Landau EM: X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science 277: 1676–1681 (1997).Google Scholar
  97. 97.
    Perry SE, Buvinger WE, Bennett J, Keegstra K: Synthetic analogues of a transit peptide inhibit binding or translocation of chloroplastic precursor proteins. J Biol Chem 266: 11882–11889 (1991).Google Scholar
  98. 98.
    Perry SE, Keegstra K: Envelope membrane proteins that interact with chloroplastic precursor proteins. Plant Cell 6: 93–105 (1994).Google Scholar
  99. 99.
    Pilon M, Wienk H, Sips W, de Swaaf M, Talboom I, van 't Hof R, de Korte-Kool G, Demel R, Weisbeek P, de Kruijff B: Functional domains of the ferredoxin transit sequence involved in chloroplast import. J Biol Chem 270: 3882–3893 (1995).Google Scholar
  100. 100.
    Pinnaduwage P, Bruce BD: In vitro interaction between a chloroplast transit peptide and chloroplast outer envelope lipids is sequence-specific and lipid class-dependent. J Biol Chem 271: 32907–32915 (1996).Google Scholar
  101. 101.
    Rapoport TA: Transport of proteins across the endoplasrnic reticulum membrane. Science 258: 931–936 (1992).Google Scholar
  102. 102.
    Reinbothe C, Apel K, Reinbothe S: A light-induced protease from barley plastids degrades NADPH:protochlorophyllide oxidoreductase complexed with chlorophyllide. Mol Cell Biol 15: 6206–6212 (1995).Google Scholar
  103. 103.
    Reinbothe S, Runge S, Reinbothe C, van Cleve B, Apel K: Substrate-dependent transport of the NADPH:protochlorophyllide oxidoreductase into isolated plastids. Plant Cell 7: 161–172 (1995).Google Scholar
  104. 104.
    Reitveld A, de Kruijff B: Phospholipids as a possible instrument for translocation of nascent proteins across biological membranes. Biosci Rep 6: 775–782 (1986).Google Scholar
  105. 105.
    Reitveld AG, Koorengevel M, de Kruijff B: Non-bilayer lipids are required for efficient protein transport across the plasma membrane of E. coli. EMBO J 14: 5506–5513 (1995).Google Scholar
  106. 106.
    Rietveld AG, Chupin VV, Koorengevel MC, Wienk HL, Dowhan W, de Kruijff B: Regulation of lipid polymorphism is essential for the viability of phosphatidylethanolaminedeficient Escherichia coli cells. J Biol Chem 269: 28670–28675 (1994).Google Scholar
  107. 107.
    Rietveld AG, Killian JA, Dowhan W, de Kruijff B: Polymorphic regulation of membrane phospholipid composition in Escherichia coli. J Biol Chem 268: 12427–12433 (1993).Google Scholar
  108. 108.
    Robinson C, Mant A: Targeting of proteins into and across the thylakoid membrane. Trends Plant Sci 2: 431–437 (1997).Google Scholar
  109. 109.
    Roise D, Horvath SJ, Tomich JM, Richards JH, Schatz G: A chemically synthesized presequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers. EMBO J 5: 1327–1334 (1986).Google Scholar
  110. 110.
    Roise D, Theiler F, Horvath SJ, Tomich JM, Richards JH, Allison DS, Schatz G: Amphiphilicity is essential for mitochondrial presequence function. EMBO J 7: 649–653 (1988).Google Scholar
  111. 111.
    Ryberg M, Sandelius AS, Selstam E: Lipid composition of prolamellar bodies and prothylakoids of wheat etioplasts Triticum aestivum. Physiol Plant 57: 555–560 (1983).Google Scholar
  112. 112.
    Ryberg M, Sudqvist C: The regular ultrastructure of isolated prolamellar bodies depends on the presence of membranebound NADPH-protochlorophyllide oxidoreductase. Physiol Plant 73: 218–226 (1988).Google Scholar
  113. 113.
    Salomon M, Fischer K, Flugge U-I, Soll J: Sequence analysis and protein import studies of an outer envelope polypeptide. Proc Natl Acad Sci USA 87: 5778–5782 (1990).Google Scholar
  114. 114.
    Sanderson PW, Williams WP: Low-temperature phase behavior of the major plant leaf lipid monogalactosyldiacylglycerol. Biochim Biophys Acta 1107: 77–85 (1992).Google Scholar
  115. 115.
    Schatz G, Dobberstein B: Common principles of protein translocation across membranes. Science 271: 1519–1526 (1996).Google Scholar
  116. 116.
    Schneider HC, Berthold J, Bauer MF, Dietmeier K, Guiard B, Brunner M, Neupert W: Mitochondrial Hsp70/MIM44 complex facilitates protein import. Nature 371: 768–774 (1994).Google Scholar
  117. 117.
    Schnell DJ, Blobel G, Keegstra K, Kessler F, Ko K, Soll J: A consensus nomenclature for the protein-import components of the chloroplast envelope. Trends Cell Biol 7: 303–304 (1997).Google Scholar
  118. 118.
    Schnell DJ, Kessler F, Blobel G: Isolation of components of the chloroplast protein import machinery. Science 266: 1007–1012 (1994).Google Scholar
  119. 119.
    Scott SV, Theg SM: A new chloroplast protein import intermediate reveals distinct translocation machineries in the two envelope membranes: energetics and mechanistic implications. J Cell Biol 132: 63–75 (1996).Google Scholar
  120. 120.
    Seedorf M, Waegemann K, Soll J: A constituent of the chloroplast import complex represents a new type of GTPbinding protein. Plant J 7235: 401–411 (1995).Google Scholar
  121. 121.
    Selstam E, Lindblom G, Brentel I, Ryberg M: The importance of monogalactosyldiglyceride for the structure of the prolamellar body Triticum aestivum, wheat. Dev Plant Biol 8: 389–392 (1982).Google Scholar
  122. 122.
    Selstam E, Sandelius AS: A comparison between prolamellar bodies and prothylakoid membranes of etioplasts of darkgrown wheat concerning lipid and polypeptide composition. Plant Physiol 76: 1036–1040 (1984).Google Scholar
  123. 123.
    Sen A, Brain AP, Quinn PJ, Williams WP: Formation of inverted lipid micelles in aqueous dispersions of mixed sn-3–galactosyldiacylglycerols induced by heat and ethylene glycol. Biochim Biophys Acta 686: 215–224 (1982).Google Scholar
  124. 124.
    Sen A, Hui SW: Direct measurement of headgroup hydration of polar lipids in inverted micelles. Chem Phys Lipids 49: 179–184 (1988).Google Scholar
  125. 125.
    Sen A, Williams WP, Brain AP, Dickens MJ, Quinn PJ: Formation of inverted micelles in dispersions of mixed galactolipids. Nature 293: 488–490 (1981).Google Scholar
  126. 126.
    Sen A, Williams WP, Quinn PJ: The structure and thermotropic properties of pure 1,2–diacylgalactosylglycerols in aqueous systems. Biochim Biophys Acta 663: 380–389 (1981).Google Scholar
  127. 127.
    Shimojima M, Ohta H, Iwamatsu A, Masuda T, Shioi Y, Takamiya K: Cloning of the gene for monogalactosyldiacylglycerol synthase and its evolutionary origin. Proc Natl Acad Sci USA 94: 333–337 (1997).Google Scholar
  128. 128.
    Shipley GG, Green JP, Nichols BW: Biochim Biophys Acta 311: 531–544 (1973).Google Scholar
  129. 129.
    Simbeni R, Pon L, Zinser E, Paltauf F, Daum G: Mitochondrial membrane contact sites of yeast. J Biol Chem 266: 10047–10049 (1991).Google Scholar
  130. 130.
    Snel MM, de Kroon AI, Marsh D: Mitochondrial presequence inserts differently into membranes containing cardiolipin and phosphatidylglycerol. Biochemistry 34: 3605–3613 (1995).Google Scholar
  131. 131.
    Sollner T, Rassow J, Wiedmann M, Schlossmann J, Keil P, Neupert W, Pfanner N: Mapping of the protein import machinery in the mitochondrial outer membrane by crosslinking of translocation intermediates. Nature 355: 84–87 (1992).Google Scholar
  132. 132.
    Stem DB, Palmer JD: Extensive and widespread homologies between mitochondrial DNA and chloroplast DNA in plants. Proc Natl Acad Sci USA 81: 1946–1950 (1984).Google Scholar
  133. 133.
    Sundqvist C, Dahlin C: With chlorophyll pigments from prolamellar bodies to light-harvesting complexes. Physiol Plant 100: 748–759 (1997).Google Scholar
  134. 134.
    Tamm LK: Membrane insertion and lateral mobility of synthetic amphiphilic signal peptides in lipid model membranes. Biochim Biophys Acta 1071: 123–148 (1991).Google Scholar
  135. 135.
    Tasaka Y, Gombos Z, Nishiyama Y, Mohanty P, Ohba T, Ohki K, Murata N: Targeted mutagenesis of acyl-lipid desaturases in Synechocystis: evidence for the important roles of polyunsaturated membrane lipids in growth, respiration and photosynthesis. EMBO J 15: 6416–6425 (1996).Google Scholar
  136. 136.
    Teucher T, Heinz E: Purification of UDP-galactose: diacylglycerol galactosyltransferase from chloroplast envelopes of spinach (Spinacia oleracea L.). Planta 184: 319–326 (1991).Google Scholar
  137. 137.
    Torok Z, Demel RA, Leenhouts JM, de Kruijff B: Presequence-mediated intermembrane contact formation and lipid flow. A model membrane study. Biochemistry 33: 5589–5594 (1994).Google Scholar
  138. 138.
    Tranel PJ, Froehlich J, Goyal A, Keegstra K: A component of the chloroplastic protein import apparatus is targeted to the outer envelope membrane via a novel pathway. EMBO J 14: 2436–2446 (1995).Google Scholar
  139. 139.
    van 't Hof R, de Kruijff B: Characterization of the import process of a transit peptide into chloroplasts. J Biol Chem 270: 22368–22373 (1995).Google Scholar
  140. 140.
    van 't Hof R, de Kruijff B: Transit sequence-dependent binding of the chloroplast precursor protein ferredoxin to lipid vesicles and its implications for membrane stability. FEBS Lett 361: 35–40 (1995).Google Scholar
  141. 141.
    van Besouw A, Wintermans JF: Galactolipid formation in chloroplast envelopes. I. Evidence for two mechanisms in galactosylation. Biochim Biophys Acta 529: 44–53 (1978).Google Scholar
  142. 142.
    van Venetie R, Verkleij AJ: Analysis of the hexagonal II phase and its relations to lipidic particles and the lamellar phase. A freeze-fracture study. Biochim Biophys Acta 645: 262–269 (1981).Google Scholar
  143. 143.
    vanWijk KJ, Andersson B, Aro EM: Kinetic resolution of the incorporation of the D1 protein into photosystem II and localization of assembly intermediates in thylakoid membranes of spinach chloroplasts. J Biol Chem 271: 9627–9636 (1996).Google Scholar
  144. 144.
    van Wijk KJ, Bingsmark S, Aro EM, Andersson B: In vitro synthesis and assembly of photosystem II core proteins. The D1 protein can be incorporated into photosystem II in isolated chloroplasts and thylakoids. J Biol Chem 270: 25685–25695 (1995).Google Scholar
  145. 145.
    vanWijk KJ, Knott TG, Robinson C: Evidence for SecA-and delta pH-independent insertion of D1 into thylakoids. FEBS Lett 368: 263–266 (1995).Google Scholar
  146. 146.
    van't Hof R, Demel RA, Keegstra K, de Kruijff B: Lipidpeptide interactions between fragements of the transit peptide of ribulose-1,5–bisphosphate carboxylase/oxygenase and chloroplast membrane lipids. FEBS Lett 291: 350–354 (1991).Google Scholar
  147. 147.
    van't Hof R, van Klompenburg W, Pilon M, Kozubek A, de Korte-Kool G, Demel RA, Weisbeek PJ, de Kruijff B: The transit sequence mediates the specific interaction of the precursor of ferredoxin with chloroplast envelope membrane lipids. J Biol Chem 268: 4037–4042 (1993).Google Scholar
  148. 148.
    Vasilenko I, De Kruijff B, Verkleij AJ: The synthesis and use of thionphospholipids in 31P-NRM studies of lipid polymorphism. Biochim Biophys Acta 685: 144–152 (1982).Google Scholar
  149. 149.
    Verkleij AJ, van Echteld CJ, Gerritsen WJ, Cullis PR, de Kruijff B: The lipidic particle as an intermediate structure in membrane fusion processes and bilayer to hexagonal HII transitions. Biochim Biophys Acta 600: 620–624 (1980).Google Scholar
  150. 150.
    von Heijne G: Mitochondrial targeting sequences may form amphiphilic helices. EMBO J 5 (1986).Google Scholar
  151. 151.
    von Heijne G: Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature 341: 456–458 (1989).Google Scholar
  152. 152.
    von Heijne G: The signal peptide. J Membr Biol 115: 195–201 (1990).Google Scholar
  153. 153.
    von Heijne G, Gavel Y: Topogenic signals in integral membrane proteins. Eur J Biochem 174: 671–678 (1988).Google Scholar
  154. 154.
    von Heijne G, Hirai T, Klösgen RB, Steppuhn J, Bruce BD, Keegstra K, Herrmann R: CHLPEP: a database of chloroplast transit peptides. Plant Mol Biol Rep 9: 104–126 (1991).Google Scholar
  155. 155.
    von Heijne G, Nishikawa K: Chloroplast transit peptides. The perfect random coil? FEBS Lett 278: 1–3 (1991).Google Scholar
  156. 156.
    von Heijne G, Steppuhn J, Herrmann RG: Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180: 535–545 (1989).Google Scholar
  157. 157.
    Webb MS, Green BR: Biochemical and biophysical properties of thylakoid acyl lipids. Biochim Biophys Acta 1060: 133–158 (1991).Google Scholar
  158. 158.
    Wieslander A, Karlsson OP: Regulation of lipid syntheses in Acholeplasma laidlawii. In: Epand RM (ed) Lipid Polymorphism and Membrane Properties. Current Topics in Membranes, vol 44, pp. 517–540. Academic Press, San Diego (1997).Google Scholar
  159. 159.
    Wildman SG, Hongladarom T, Honda SI: Chloroplasts and mitochondria in living plants cell: cinephotomicrographic studies. Science 138: 434–436 (1962).Google Scholar
  160. 160.
    Williams WP, Quinn PJ: The phase behavior of lipids in photosynthetic membranes. J Bioenerg Biomembr 19: 605–624 (1987).Google Scholar
  161. 161.
    Wu G-J, Watanaba A: Import of D1 protein and its assembly into Photosystem II by isolated chloroplasts. Plant Cell Physiol 38: 243–247 (1997).Google Scholar
  162. 162.
    Yeagle PL, Sen A: Hydration and the lamellar to hexagonal II phase transition of phosphatidylethanolamine. Biochemistry 25: 7518–7522 (1986).Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Barry D. Bruce
    • 1
  1. 1.Center for Legume Research and Department of Biochemistry and Cellular & Molecular BiologyUniversity of TennesseeKnoxvilleUSA (e-mail

Personalised recommendations