Plant Molecular Biology

, Volume 38, Issue 6, pp 1169–1178 | Cite as

Expression of an anther-specific chalcone synthase-like gene is correlated with uninucleate microspore development in Nicotiana sylvestris

  • Ivan Atanassov
  • Eugenia Russinova
  • Ludmil Antonov
  • Atanas Atanassov


Two cDNA clones, specifically expressed in Nicotiana sylvestris anthers during uninucleate microspore development, were isolated using a subtractive hybridization approach. Sequence analysis showed that one of them, NSCHSLK, displayed a high level of similarity to several anther-specific chalcone synthase-like (CHSLK) proteins and an ORF from chromosome 1 of Arabidopsis thaliana. A lower, but significant, similarity to chalcone synthases and closely related enzymes (CHSRE) was also detected. The structure of the nschslk gene was found to be typical of the chalcone (chs) / stilbene (sts) synthase family. Expression of NSCHSLK mRNA was confined to microspores and tapetal cells. UV-irradiation or infection with Phytophthora parasitica var. nicotianae of transgenic Nicotiana benthamiana plants carrying a chimeric nschslk/GUS gene indicated that the nschslk promoter exhibits the same anther-specific, developmentally regulated expression pattern. Comparison of CHSRE and CHSLK polypeptide sequences revealed some important similarities and differences between the two groups. The data presented in this study, suggest that the anther-specific chslk genes represent a separate sub-family of plant polyketide synthases related to chs/sts in terms of gene structure, polypeptide sequence and the possible catalytic mechanism, but differing in substrate/product specificity. The putative role of CHSLK enzymes in anther development and particularly in exine synthesis is discussed.

anther Arabidopsis thaliana chalcone synthase-like microspore Nicotiana sylvestris tapetum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aarts M, Hodge R, Kalatidis K, Florack D, Wilson Z, Milligan B, Stiekema W, Scott R, Pereira A: The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J 12: 615–623 (1997).Google Scholar
  2. 2.
    Akada S, Kung S, Dube S: The nucleotide sequence of gene 3 of thesoybean chalcone synthase multigene family. Nucl Acids Res 18: 5899–5903 (1990).Google Scholar
  3. 3.
    Altschul S, Gish, W, Miller W, Myers E, Lipman D: Basic local alignment search tool. J Mol Biol 215: 403–410 (1990).Google Scholar
  4. 4.
    Atanassov I, Masuta C, Tanaka H, Kataoka J, Kuwata S: Comparativestudy of screening with subtracted probe and differential screening on isolation of flower-specific cDNA clones from Nicotiana sylvestris. Plant Sci 118: 185–194 (1996).Google Scholar
  5. 5.
    Barbacar N, Hinnisdaels S, Farbos I, Moneger F, Lardon A, Delichere C, Mouras A, Negrutiu I: Isolation of early genes expressed in reproductive organs of the dioecious white campion (Silene latifolia) by subtractivecloning using an asexual mutant. Plant J 12: 805–817 (1997).Google Scholar
  6. 6.
    Bisseling T, van Hengel A, Kieft H, van Lammeren A, Pawlowski K, De Ruijter N, van der Sande K, De Vries S, Yang W-C: In situ Hybridization and Cytochemistry in Plants. EMBO course, Wageningen, Netherlands (1995).Google Scholar
  7. 7.
    Burbulis I, Iacobucci M, Shirley B: A null mutation in the first enzyme offlavonoid biosynthesis does not affect male fertility in Arabidopsis. Plant Cell 8: 1013–1025 (1996).Google Scholar
  8. 8.
    Cox K, Goldberg R: Analysis of plant gene expression. In: Shaw CH (ed.) Plant Molecular Biology: A Practical Approach, pp. 1–34 IRL Press, Oxford (1988).Google Scholar
  9. 9.
    De Block M, Debrouwer D: In-situ enzyme histochemistry on plastic-embedded plant material. The development of an artefact-free β-glucuronidase assay. Plant J 2: 261–266 (1992).Google Scholar
  10. 10.
    Dixon R, Paiva N: Stress-induced phenylpropanoid metabolism. Plant Cell 7: 1085–1097 (1995).Google Scholar
  11. 11.
    Ehmann B, Schafer E: Nucleotide sequences encoding two different chalcone synthases expressed in cotyledones of SAN9789 treated mustard (Sinapis alba). Plant Mol Biol 11: 869–870 (1988).Google Scholar
  12. 12.
    Fahn A, Plant Anatomy. Pergamon Press, Oxford (1990)Google Scholar
  13. 13.
    Feinbaum R, and Ausubel F: Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Mol Cell Biol 8: 1985–1992 (1988).Google Scholar
  14. 14.
    Fischer R, Budde I, Hain R: Stilbene synthase gene expressioncauses changes in flower colour and male sterility in tobacco. Plant J 11: 489–498 (1997).Google Scholar
  15. 15.
    Fliegmann J, Schröder G, Schanz S, Britisch L, Schröder J: Molecularanalysis of chalcone and dihydropinosylvin synthase from Scots pine (Pinus sylvestris), and differential regulation of these and related enzyme activities in stressed plants. Plant Mol Biol 18: 489–503 (1992).Google Scholar
  16. 16.
    Franken P, Niesbach-Klösegen U, Weydemann U, Marechal-Drouard L, Saedler H, Wienand U: The duplicated chalcone synthase genes C2 and Whp (white pollen) of Zea mays are independently regulated: evidence for translational control of Wph expression by the anthocyanin intensifying gene in. EMBO J 10: 2605–2612 (1991).Google Scholar
  17. 17.
    Goldberg R, Beals T, Sanders P: Anther development: basic principles and practical applications. Plant Cell 5: 1217–1229 (1993).Google Scholar
  18. 18.
    Helariutta Y, Elomaa P, Kotilainen M, Griesbach R, Schröder J, Teeri T: Chalcone synthase-like genes active during corolla development are differentially expressed and encode enzymes with different catalytic properties in Gerbera hybrida (Asteraceae). Plant Mol Biol 28: 47–60 (1995).Google Scholar
  19. 19.
    Hihara Y, Hara C, Uchimiya H: Isolation and characterization of two cDNA clones for mRNAs that are abundantly expressed in immature anthers of rice (Oryza sativa L.). Plant Mol Biol 30: 1181–1193 (1996).Google Scholar
  20. 20.
    Horsch R, Fry J, Hoffmann N, Eichholtz D, Rogers S, Fraley R: A simpleand general method for transferring genes into plants. Science 227: 1229–1231 (1985).Google Scholar
  21. 21.
    Jefferson R: Assaying chimeric genes in plants: the GUS fusion system. Plant Mol Biol Rep 5: 387–405 (1987).Google Scholar
  22. 22.
    Junghanns K, Kneusel R, Baumert A, Maier W, Groger D, Matern U: Molecular cloning and heterologous expression of acridone synthasefrom elicited Ruta graveolens L. cell suspension cultures. Plant Mol Biol 27: 681–692 (1995).Google Scholar
  23. 23.
    Koes R, Spelt C, van der Elzen P, Mol JNM: Cloning and molecularcharacterization of the chalcone synthase multigene family of Petunia hybrida. Gene 81: 245–257 (1989).Google Scholar
  24. 24.
    Koes R, van Blokland R, Quattrocchio F, van Tunen A, Mol JNM: Chalcone synthase promoters in petunia are active in pigmented and unpigmented cell types. Plant Cell 2: 379–392 (1990).Google Scholar
  25. 25.
    Koes R, Quattrocchio F, Mol JNM: The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays 16: 123–132 (1994).Google Scholar
  26. 26.
    Koltunow A, Truettner J, Cox K, Wallroth M, Goldberg R: Different temporal and spatial gene expression patterns occur during antherdevelopment. Plant Cell 2: 1201–1224 (1990).Google Scholar
  27. 27.
    Lanz T, Tropf S, Marner F, Schröder J, Schröder G: The role ofcysteines in polyketide synthases. J Biol Chem 266: 9971–9976 (1991).Google Scholar
  28. 28.
    Mariani C, DeBeuckeleer M, Truettner J, Leemans J, Goldberg R: Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347: 737–741 (1990).Google Scholar
  29. 29.
    Martin C: Structure, function and regulation of the chalcone synthase. Int Rev Cytol 147: 233–284 (1993).Google Scholar
  30. 30.
    Matsuoka M, Sanada Y: Expression of photosynthetic genes from the C4 plant, maize, in tobacco. Mol Gen Genet 225: 411–419 (1991).Google Scholar
  31. 31.
    McCormick S: Male gametophyte development. Plant Cell 5: 1265–1275 (1993).Google Scholar
  32. 32.
    Melchior F, Kindl H: Grapevine stilbene synthase cDNA only slightly differing from chalcone synthase cDNA is expressed in Escherichia coli into a catalytically active enzyme. FEBS Lett 268: 17–20 (1990).Google Scholar
  33. 33.
    Mo Y, Nagel C, Taylor L: Biochemical complementation of chalconesynthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci USA 89: 7213–7217 (1992).Google Scholar
  34. 34.
    Nakajima O, Akiyama T, Hakamatsuka T, Shibuya T, Noguchi H, Ebizuka Y, Sankawa U: Isolation, sequence and bacterial expression ofa cDNA for chalcone synthase from the cultured cells of Pueraria lobata. Chem Pharm Bull (Tokyo) 39: 1911–1913 (1991).Google Scholar
  35. 35.
    Niesbach-Klösgen U, Barzen E, Bernhardt J, Rohde W, Schwarz-Sommer Z, Reif H, Wienand U, Saedler H: Chalcone synthase genes in plants: a tool to study evolutionary relationships. J Mol Evol 26: 213–225 (1987).Google Scholar
  36. 36.
    O'Neil S, Tong Y, Sporlein B, Forkmann G, Yoder J: Molecular genetic analysis of chalcone synthase in Lycopersicum esculentum and an anthocyanin-deficient mutant. Mol Gen Genet 224: 279–288 (1990).Google Scholar
  37. 37.
    Preisig-Muller R, Gnau P, Kindl H: The inducible 9,10-dihydrophnanthrene pathway: characterization and expression of bibenzyl synthase and S-adenosylhomocysteine hydrolase. Arch Biochem Biophys 317: 201–207 (1995).Google Scholar
  38. 38.
    Reimold U, Kroeger M, Kreuzaler F, Hahlbrock K: Coding and 3‱ non-coding nucleotide sequence of chalcone synthase mRNA and assignment of amino acid sequence of the enzyme. EMBO J 2: 1801–1805 (1983).Google Scholar
  39. 39.
    Rhodes M: Physiological roles for secondary metabolites in plants:some progress, many outstanding problems. Plant Mol Biol 24: 1–20 (1994).Google Scholar
  40. 40.
    Roberts M, Boyes E, Scott R: An investigation of the role of the anthertapetum during microspore development using genetic cell ablation. Sex Plant Reprod 8: 299–307 (1995).Google Scholar
  41. 41.
    Sambrook J, Fritsch E, Maniatis T (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).Google Scholar
  42. 42.
    Schröder J: A family of plant-specific polyketide synthases: facts andpredictions. Trends Plant Sci 2: 373–378 (1997).Google Scholar
  43. 43.
    Schröder G, Brown J, Schröder J: Molecular analysis of reveratrolsynthase: cDNA clone, genomic clones and relationship with chalcone synthase. Eur J Biochem 172: 161–169 (1988).Google Scholar
  44. 44.
    Schröder G, Schröder J: A single change of histidine to glutamine altersthe substrate preference of a stilbene synthase. J Biol Chem 267: 20558–20560 (1992).Google Scholar
  45. 45.
    Scott R, Dagless E, Hodge R, Paul W, Soufleri I, Draper J: Patterns of gene expression in developing anthers of Brassica napus. Plant Mol Biol 17: 195–207 (1991).Google Scholar
  46. 46.
    Scott R, Hodge R, Paul W, Draper J: The molecular biology of antherdifferentiation. Plant Sci 80: 167–191 (1991).Google Scholar
  47. 47.
    Shen J, Hsu F: Brassica anther-specific genes: characterization and in situ localization of expression. Mol Gen Genet 234: 379–389 (1992).Google Scholar
  48. 48.
    Smith A, Gasser C, Budelier K, Fraley R: Identification and characterization of stamen-and tapetum-specific genes from tomato. Mol Gen Genet 222: 9–16 (1990).Google Scholar
  49. 49.
    Sommer H, Saedler H: Structure of the chalcone synthase gene of Antirrhinum majus. Mol Gen Genet 202: 429–434 (1986).Google Scholar
  50. 50.
    Taylor L, Jorgensen R: Conditional male fertility in chalcone synthase-deficient petunia. J Hered 83: 11–17 (1992).Google Scholar
  51. 51.
    Tropf S, Lanz T, Rensing S, Schröder J, Schröder G: Evidence that stilbene synthases have developed from chalcone synthases severaltimes in the course of evolution. J Mol Evol 38: 610–618 (1994).Google Scholar
  52. 52.
    Tropf S, Lanz T, Schröder J: Reaction mechanism of homodimeric plant polyketide synthase (stilbene and chalcone synthase): a single active site for the condensing reaction is sufficient for synthesis of stilbenes,chalcones and 6′-deoxychalcones. J Biol Chem 270: 7922–7928 (1995).Google Scholar
  53. 53.
    Tsay T-J, Oh W, Larson T, Jackowski S, Rock C: Isolation and characterization of the _-ketoacyl-acyl carrier protein synthase III gene (fabH) from Escherichia coli K-12. J Biol Chem 267: 6807–6814 (1992).Google Scholar
  54. 54.
    van der Meer I, Stam M, van Tunen A, Mol JNM, Stuitje A: Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell 4: 253–262 (1992).Google Scholar
  55. 55.
    van Eldik G, Reijnen W, Ruiter R, van Herpen M, Schrauwen J, Wullems G: Regulation of flavonol biosynthesis during anther and pistildevelopment, and during pollen tube growth in Solanum tuberosum. Plant J 11: 105–113 (1997).Google Scholar
  56. 56.
    Watson J, Thompson W: Purification and restriction endonuclease analysis of plant nuclear DNA. Meth Enzymol 118: 57–75 (1986).Google Scholar
  57. 57.
    Worrall D, Hird D, Hodge R, Paul W, Draper J, Scott R: Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell 4: 759–771 (1992).Google Scholar
  58. 58.
    Ylstra B, Muskens M, van Tunen A: Flavonols are not essential for fertilization in Arabidopsis thaliana. Plant Mol Biol 32: 1155–1158 (1996).Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Ivan Atanassov
    • 1
  • Eugenia Russinova
    • 1
  • Ludmil Antonov
    • 1
  • Atanas Atanassov
    • 2
  1. 1.Intsitute of Genetic EngineeringKostinbrod-2Bulgaria
  2. 2.De Montfort University, Norman Borlaug Center for Plant Science ResearchKostin-brod-2Bulgaria

Personalised recommendations