Advertisement

Plant Molecular Biology

, Volume 38, Issue 5, pp 689–697 | Cite as

Nucleotide sequences and functional characterization of two tobacco UAG suppressor tRNAGln isoacceptors and their genes

  • Michael Grimm
  • Armin Nass
  • Christine Schüll
  • Hildburg Beier
Article

Abstract

We isolated and sequenced the two major tRNAGln isoacceptors with CUG and UmUG anticodons from the cytoplasm of Nicotiana rustica. These are the first tRNAsGln of nuclear origin characterized in plants. The tRNAGln sequences were used to design probes for the isolation of the corresponding genes from a nuclear DNA library of N. rustica. The two cloned Nicotiana tRNAGln genes, coding for either of the two isoacceptors, are efficiently transcribed in HeLa cell nuclear extract. In vitro translation in the presence of purified Nicotiana tRNAsGln was carried out in a wheat germ extract partially depleted of endogenous tRNAs. Cytoplasmic (cyt) tRNAGlnCUG and to a lesser extent cyt tRNAGlnUmUG stimulated readthrough over the UAG stop codon present in the tobacco mosaic virus-specific context. The two tRNAGln isoacceptors are the second class of natural UAG suppressors identified in plants, in addition to cyt tRNATyrG Ψ A which has previously been characterized as the first natural UAG suppressor.

glutamine tRNA genes glutamine tRNAs in vitro transcription Nicotiana UAG readthrough 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akama K: Molecular cloning and sequencing of a nuclear gene encoding tRNAGln (UUG) from Arabidopsis thaliana. Biochim Biophys Acta 1307: 127–128 (1996).Google Scholar
  2. 2.
    Arends S, Kraus J, Beier H: The tRNATyr multigene family of Triticum aestivum: genome organization, sequence analyses and maturation of intron-containing pre-tRNAs in wheat germ extract. FEBS Lett 384: 222–226 (1996).Google Scholar
  3. 3.
    Barciszewska MZ, Keith G, Kubli E, Barciszewski J: The primary structure of wheat germ tRNAArg-the substrate for arginyl-tRNAArg: protein transferase. Biochimie 68: 319–323 (1986).Google Scholar
  4. 4.
    Baum M, Beier H: Wheat cytoplasmic arginine tRNA isoacceptor with U*CG anticodon is an efficient UGA suppressor in vitro. Nucl Acids Res 26: 1390–1395 (1998).Google Scholar
  5. 5.
    Beier H, Gross HJ: Sequence analysis of RNA. In: Brown TA (ed) Essential Molecular Biology: A Practical Approach, pp. 221–236. IRL Press, Oxford (1991).Google Scholar
  6. 6.
    Beier H, Barciszewska M, Krupp G, Mitnacht R, Gross HJ: UAG readthrough during TMV RNA translation: isolation and sequence of two tRNAsTyr with suppressor activity from tobacco plants. EMBO J 3: 351–356 (1984).Google Scholar
  7. 7.
    Beier H, Barciszewska M, Sickinger HD: The molecular basis for the differential translation of TMV RNA in tobacco protoplasts and wheat germ extracts. EMBO J 3: 1091–1096 (1984).Google Scholar
  8. 8.
    Crick FHC: Codon-anticodon pairing: the wobble hypothesis. J Mol Biol 19: 548–555 (1966).Google Scholar
  9. 9.
    Dignam JD, Lebovitz RM, Roeder RG: Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucl Acids Res 11: 1475–1489 (1983).Google Scholar
  10. 10.
    Feng YX, Levin JG, Hatfield DL, Schaefer TS, Gorelick RJ, Rein A: Suppression of UAA and UGA termination codons in mutant murine leukemia viruses. J Virol 63: 2870–2873 (1989).Google Scholar
  11. 11.
    Geiduschek EP, Tocchini-Valentini GP: Transcription by RNA polymerase III. Annu Rev Biochem 57: 873–914 (1988).Google Scholar
  12. 12.
    Hanyu N, Kuchino Y, Nishimura S, Beier H: Dramatic events in ciliate evolution: alteration of UAA and UAG termination codons to glutamine codons due to anticodon mutations in two Tetrahymena tRNAsGln. EMBO J 5: 1307–1311 (1986).Google Scholar
  13. 13.
    Hirsh D: Tryptophan transfer RNA as the UGA suppressor. J Mol Biol 58: 439–458 (1971).Google Scholar
  14. 14.
    Johnson GD, Pirtle IL, Pirtle RM: The nucleotide sequence of tyrosine tRNAQ9A from bovine liver. Arch Biochem Biophys 236: 448–453 (1985).Google Scholar
  15. 15.
    Kuchino Y, Muramatsu T: Nonsense suppression in mammalian cells. Biochimie 78: 1007–1015 (1996).Google Scholar
  16. 16.
    Kuchino Y, Beier H, Akita N, Nishimura S: Natural UAG suppressor glutamine tRNA is elevated in mouse cells infected with Moloney murine leukemia virus. Proc Natl Acad Sci USA 84: 2668–2672 (1987).Google Scholar
  17. 17.
    Lin JP, Aker M, Sitney KC, Mortimer RK: First position wobble in codon-anticodon pairing: amber suppression by a yeast glutamine tRNA. Gene 49: 383–388 (1986).Google Scholar
  18. 18.
    Pfitzinger H, Weil JH, Pillay DTN, Guillemaut P: Preparation of a tRNA-dependent wheat germ protein-synthesizing system. Plant Mol Biol 12: 301–306 (1989).Google Scholar
  19. 19.
    Rhode W, Gramstat A, Schmitz J, Tacke E, Prüfer D: Plant viruses as model systems for the study of non-canonical translation mechanisms in higher plants. J Gen Virol 75: 2141–2149 (1994).Google Scholar
  20. 20.
    Schüll C, Beier H: Three Tetrahymena tRNAGln isoacceptors as tools for studying unorthodox codon recognition and codon context effects during protein synthesis in vitro. Nucl Acids Res 22: 1974–1980 (1994).Google Scholar
  21. 21.
    Skuzeski JM, Nichols LM, Gesteland RF: Analysis of leaky viral translation termination codonsin vivo by transient expression of improved β-glucuronidase vectors. Plant Mol Biol 15: 65–79 (1990).Google Scholar
  22. 22.
    Sprinzl M, Steegborn C, Hübel F, Steinberg S: Compilation of tRNA sequences and sequences of tRNA genes. Nucl Acids Res 24: 68–72 (1996).Google Scholar
  23. 23.
    Stange N, Beier H: A cell-free plant extract for accurate pre-tRNA processing, splicing and modification. EMBO J 6: 2811–2818 (1987).Google Scholar
  24. 24.
    Stange N, Beier D, Beier H: Expression of nuclear tRNATyr genes from Arabidopsis thaliana in HeLa cell and wheat germ extracts. Plant Mol Biol 16: 865–875 (1991).Google Scholar
  25. 25.
    Stanley J, Vassilenko S: A different approach to RNA sequencing. Nature 274: 87–89 (1978).Google Scholar
  26. 26.
    Teichmann T, Urban C, Beier H: The tRNASer-isoacceptors and their genes inNicotiana rustica: genome organization, expression in vitro and sequence analyses. Plant Mol Biol 24: 889–901 (1994).Google Scholar
  27. 27.
    Urban C, Beier H: Cysteine tRNAs of plant origin as novel UGA suppressors. Nucl Acids Res 23: 4591–4597 (1995).Google Scholar
  28. 28.
    Urban C, Smith KN, Beier H: Nucleotide sequences of nuclear tRNACys genes from Nicotiana and Arabidopsis and expression in HeLa cell extract. Plant Mol Biol 32: 549–552 (1996).Google Scholar
  29. 29.
    Urban C, Zerfass K, Fingerhut C, Beier H: UGA suppression by tRNACmCATrp occurs in diverse virus RNAs due to a limited influence of the codon context. Nucl Acids Res 24: 3424–3430 (1996).Google Scholar
  30. 30.
    Valle RPC, Morch MD: Stop making sense or regulation at the level of termination in eukaryotic protein synthesis. FEBS Lett 235: 1–15 (1988).Google Scholar
  31. 31.
    Valle RPC, Morch MD, Haenni AL: Novel amber suppressor tRNAs of mammalian origin. EMBO J 6: 3049–3055 (1987).Google Scholar
  32. 32.
    van Telgen HJ, van Loon LC: Isolation and electrophoretic analysis of chromatin-associated proteins from virus-infected tobacco leaves. Z Pflanzenphysiol 112: 171–180 (1983).Google Scholar
  33. 33.
    Viotti A, Balducci C, Weil JH: Adaptation of the tRNA population of maize endosperm for zein synthesis. Biochim Biophys Acta 517: 125–132 (1978).Google Scholar
  34. 34.
    Wandelt C, Feix G: Sequence of a 21 kd gene from maize containing an in-frame stop codon. Nucl Acids Res 17: 2354 (1989).Google Scholar
  35. 35.
    Weiss WA, Friedberg EC: Normal yeast tRNAGln CAG can suppress amber codons and is encoded by an essential gene. J Mol Biol 192: 725–735 (1986).Google Scholar
  36. 36.
    Weiss WA, Edelman I, Culbertson MR, Friedberg EC: Physiological levels of normal tRNACAGGln can effect partial suppression of amber mutations in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 84: 8031–8034 (1987).Google Scholar
  37. 37.
    Yoshinaka Y, Katho I, Copeland TD, Oroszlan S: Murine leukemia virus protease is encoded by the gag-pol gene and is synthesized through suppression of an amber termination codon. Proc Natl Acad Sci USA 82: 1618–1622 (1985).Google Scholar
  38. 38.
    Zerfass K, Beier H: Pseudouridine in the anticodon GΨA of plant cytoplasmic tRNATyr is required for UAG and UAA suppression in the TMV-specific context. Nucl Acids Res 20: 5911–5918 (1992).Google Scholar
  39. 39.
    Zerfass K, Beier H: The leaky UGA termination codon of tobacco rattle virus RNA is suppressed by tobacco chloroplast and cytoplasmic tRNAsTrp with CmCA anticodon. EMBO J 11: 4167–4173 (1992).Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Michael Grimm
    • 1
  • Armin Nass
    • 1
  • Christine Schüll
    • 1
  • Hildburg Beier
    • 1
  1. 1.Institut für Biochemie, BayerischeJulius-Maximilians-Universität, Biozentrum, Am HublandGermany

Personalised recommendations