Environmental Monitoring and Assessment

, Volume 53, Issue 3, pp 467–487 | Cite as

Euro Chlor Risk Assessment for the Marine Environment Osparcom Region: North Sea - Trichloroethylene

  • Jean-Charles Boutonnet
  • Christ De Rooij
  • Veronique Garny
  • Andre Lecloux
  • Roger Papp
  • Roy S Thompson
  • Dolf Van Wijk


This risk assessment on trichloroethylene (TRI) was carried out specifically for the marine environment, according to the methodology laid down in the EU risk assessment Regulation (1488/94) and the Guidance Document of the EU New and Existing Substances Regulation (TGD, 1997). The study consists of the collection and evaluation of data on effects and environmental concentrations from analytical monitoring programs in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of the "predicted environmental concentrations" (PEC) and the "predicted no effect concentrations" (PNEC) for the marine aquatic environment. In total, 19 studies for fish, 30 studies for invertebrates and 14 studies for algae have been evaluated. Both acute and chronic toxicity studies have been taken into account and the appropriate assessment factors have been used to define a PNEC value of 150 µg/l. Most of the available monitoring data apply to rivers and estuaries and were used to calculate PECs. The most recent data (1991-1995) support a typical PEC of 0.1 µg TRI/l water and a worst case PEC of 3.5 µg TRI/l water. The calculated PEC/PNEC ratios give a safety margin of 40 to 1,500 between the predicted no effect concentration and the exposure concentration. Additional evaluation of environmental fate and bioaccumulation characteristics showed that no concern for food chain accumulation is expected.

risk assessment chlorinated compound environmental marine exposure aquatic toxicity monitoring trichloroethylene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abernethy S. Bobra A.M., Shiu W.Y., Well P.G., Mackay D. (1986); Acute lethal toxicity of hydrocarbons and chlorinated hydrocarbons to two planktonic crustaceans: the key role of organism-water partitioning. Aquatic Tox. 8, 163–174Google Scholar
  2. Agence de Bassin Seine — Normandie (1995)-Personal CommunicationGoogle Scholar
  3. Alexander H.C., McCarty W.M., Barlett E.A. (1978); Toxicity of perchloroethylene, trichloroethylene, 1,1,1-trichloroethane, and methylene chloride to fathead minnows Bull. Environ. Contam. Toxicol., 20, 344–352Google Scholar
  4. Arbeitsgemeinschaft zur Reinhaltung der Weser-Gütebericht(1993)-Published 1994.Google Scholar
  5. Barrows M.E., Petrocelli, S.R., Macek, K.J., Carroll, J.J. (1978): Bioconcentration and elimiation of selected water pollutants by bluegill sunfish (Lepomis macrochirus) in dynamics, exposure and hazard assessment of toxic chemicals; R. Hague Ed.; Ann Arbor, Science 379–392, Ann Aarbor MichiganGoogle Scholar
  6. Bazin, C., Chambon, P., Bonnefille, M., Larbaigt, G. (1987). Comparison of the sensitivity of a test using the luminescent marine bacteria (Photobacterium phosphoreum) and Daphnia bioassays. Sciences de l'eau, 6, 403–413Google Scholar
  7. Biggs D.C. (1979); Effects of trichloroethylene, hexachlorobenzene and polychlorinated biphenyls on the growth and cell size of marine phytoplankton. Bull. Environ. Contam. Toxicol., 21, 196–201Google Scholar
  8. Brack, W., Rottler, H. (1994), Toxicity testing of highly volatile chemicals with green algae. Environ. Sci & Pollut. Res. 1, 223–228Google Scholar
  9. Bringmann G., Kühn R. (1978); Limiting values for the noxious effects of water pollutant material to blue algae (Microcystis aeruginosa) and green algae (Scenedesmus quadricauda) in cell propagation inhibition tests. Vom Wasser, 50, 45–60Google Scholar
  10. Bringmann, G., Kuehn, R. (1982): Ergbnisse der Schadwirkung Wassergefährdender Stoffe gegen Daphnia magna in einem weiterentwickelten standardisierten Testverfahren; Z. Wasser Abwasser Forsch. 151, 1.6Google Scholar
  11. BUA Report (1995)-Trichloroethene-German Chemical Society Society-S. Hirzel — Wissenschaftliche Verlagsgesellschaft StuttgartGoogle Scholar
  12. Buccafusco R.J. Ellis S.J., Leblanc G.A. (1981); Acute toxicity of priority pollutants to bluegill (Lepomis macrochirus). Bull. Environ. Contam Toxicol., 26, 446–452Google Scholar
  13. Canton J.H., Adema D.M. (1978). Reproducibility of short-term and reproduction toxicity experiments with Daphnia magna and comparison of the sensitivity of Daphnia magna with Daphnia pulex and Daphnia cucullata in short-term experiments. M. Hydrobiologia, 59, 135–140Google Scholar
  14. Council Directive 90/415/EEC (Official Journal L219, 14/08/90) amending Annex II to Directive 86/280/EEC on limit values and quality objectives for discharges of certain dangerous substances included in list I of the Annex to Directive 76474/EECGoogle Scholar
  15. Commission Directive 93/72/EEC (Official Journal L258, 16.10.93) on classification, packaging and labelling of dangerous substancesGoogle Scholar
  16. Commission Regulation 94/1488/EEC (Official Journal L161, 29/06/94) laying down the principles for the assessment of risks to man and the environment of existing substances in accordance with Council Regulation (EEC) No 793/93Google Scholar
  17. Council Directive 96/54/EEC (Official Journal L248, 30/09/96) on the approximation of the laws, regulations and administrative provisions relating to the classification, packaging and labelling of dangerous substancesGoogle Scholar
  18. Dawes, V.J. Waldock M.J. (1994). Measurement of volatile organic compounds at UK national monitoring plan stations; Marine Pollut. Bulletin, 28(5) 291–298Google Scholar
  19. Deutsche Kommission zur Reinhaltung des Rheins Zahlentafeln der physikalisch-chemisch Untersuchungen 1993-Bericht Oct 1995-ISSN O173-1653.Google Scholar
  20. Devillers J., Chambon, P., Zakarya, D., Chastttrette, M., Chambon, R. (1978); A predictive structure-toxicity model with Daphnia magna. Chemosphere, 16 1149–1163Google Scholar
  21. De Rooij, C.-The impact of waste water from the chemical industry on the quality of the marine environment — Changes with time-Paper presented at “10 years Belgica” Symposium Ostend, 17–19 Oct. 1994.Google Scholar
  22. De Wolf, W., Canton, J.H., Deneer, J.W., Wegman, R.C.C., Hermens, J.L.M. (1988): Quantitative structure-activity relationships and mixture-toxicity studies of alcohols and chlorohydrocarbons: reproducibility of effects on growth and reproduction of Daphnia magna. Aquatic Tox., 12, 39–49Google Scholar
  23. ECOLAS-Oct 1991-Updating of data concerning the impact of certain dangerous substances on the aquatic environment. Chlorinated and brominated hydrocarbons prepared for the Commission of the European Communities Directorate-General Environment, Nuclear Safety and Civil Protection under Contract No B6612-90-007207 (Ir K Mergaert, Dr Ir P Vanheackeo Google Scholar
  24. ECSA (1997), European Chlorinated Solvent Association: Personal CommunicationGoogle Scholar
  25. Farhni H.P. (1984); Volatile chlorinated hydrocarbons in Swiss surface waters, Schweizer Gewässern, Gas, Wasser, Abwasser, 64, 689–695Google Scholar
  26. Geiger D.L., Northcott C.E., Call D.J., Brooke L.T. (1985) Acute toxicities of org. chem. to fathead minnow (Pimephales pr.) vol 2, Center for lake sup. env. studies, U. Wisconsin, 326pGoogle Scholar
  27. Geyer H. (1985); The effects of organic environmental chemicals on the growth of the alga Scenedesmus subspicatus: a contribution to environmental biology; Chemosphere, 14, 1355–1369Google Scholar
  28. Hermens J, Canton H. Janssen P. De Jong (1984); Quantitative structure-activity relationships and toxicity studies of mixtures of chemicals with anesthetic potency: acute lethal and sublethal toxicity to Daphnia magna; J.Aquatic Tox, 5, 143–154Google Scholar
  29. Hermens J. Busser F. Leeuwanck P. (1985); Quantitative correlation studies between the acute lethal toxicity of 15 organic halides to the guppy (Poecilia reticulata) and chemical reactivity towards 4-nitrobenzylpyridine; Toxicology and Environ Chem, 2, 219–236Google Scholar
  30. Hermens J., Broekhuyzen, EE., Canton, H., Wegman, R. (1988). Quantitative structure activity relationships and mixture toxicity studies of alcohols and chlorohydrocarbons: effects on growth of Daphnia magna; Aquatic Tox., 6, 209–217Google Scholar
  31. IPCC (1997); Greenhouse Gas Inventory, Reference Manual; Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories, Vol. 3, OECD (Organisation for Economic Cooperation and Development), Paris, France, 1997Google Scholar
  32. IUCLID (1996) International Uniform Chemical Information Database — Data Sheet — Trichloroethylene; European Chemical Bureau, Ispra, Italy-CD-RomGoogle Scholar
  33. Janus, J.A., Hesse, J.M., Rikken, M.G.J., Aandachtstoffen in het Nederlandse Milieubeleid-Overzicht 1994 (Nov 1994)-Rapport No601014006 van Rijksinstituut voor Volksgezondheid en Milieuhygiene-Bilthoven.Google Scholar
  34. Juhnke, I., Luedemann, D., (1978) Results of the study of 200 chemical compounds on acute fish toxicity using the golden orfe test. Z. Wasser Abwasser Forsch., 11, 161–4Google Scholar
  35. Kordel W., Kuhnen-Clausen, D., Fabig, W. Otto, F. (1984); Überprüfung der Dürchführbarkeit von Prüfungsvorschriften und der Aussagekraft der Stufe 1 und 2 des Chemikaliengesetzes Verlangerte Toxizität für Daphnia magna; 108-118; Bericht der Fraunhofer Instituts für toxicol und Aerosolforschung; Schmallenberg-Grafschaft, an das Umweltbundesamt, Berlin, Forschungsbericht Nr 106 04 011/01, 10Google Scholar
  36. Krebs, F., (1985) UFO-Plan 105 05 115, Forschungsbericht FB 85–126, UmweltbundesamtGoogle Scholar
  37. Krijsell, M., Nightingale, P.D. (1993) Low molecular weight halocarbons in the Humber and Rhine estuaries determined using a new purge and trap gas chromatographic method. Continental Shell ResearchGoogle Scholar
  38. Lay J.-P.; Hermann M.E. (1991); Ecotoxicological effects of trichloroethane upon plankton. Toxicology and Environ. Chem., 31–32, 409–416Google Scholar
  39. LeBlanc G.A. (1980); Acute toxicity of priority pollutants to water flea (Daphnia magna); Bull Environ Contam Toxicol, 24, 684–691Google Scholar
  40. Loeckle D.M., Schecter, A.J., Christian, J.J. (1983); Effects of chloroform, tetrachloroethylene, and trichloroethylene on survival, growth, and liver of Poecilia sphenops; Bull. Environ. Contam. Toxicol., 30, 199–205Google Scholar
  41. MAFF — Ministry of Agriculture, Fisheries and Food-Aquatic environment Monitoring Report Number 44-1993 Data-Published in 1995Google Scholar
  42. McCarty W.M. (1979) Dow Chemical USA, report ES 324Google Scholar
  43. McCulloch, A., Midgley, P.M. (1996); The production and global distribution of emissions of trichloroethene, tetrachloroethene and dichloromethane over the period 1988–1992; Atmospheric Environment, 30(4), pp. 601–608Google Scholar
  44. Mackay, D. Patterson, S. (1990); Fugacity models; in Karcher, W. Devillers, J. (Eds); Practical applications of quantitative structure-activity relations in environmental chemistry and toxicology 433–460Google Scholar
  45. Pearsons C.R., McConnell G. (1975): Chlorinated C1 and C2 hydrocarbons in the marine environment. Proc. R. Soc. Lond. B, 189, 305–332Google Scholar
  46. Ostfeldt, P., Gustavson, K., Jansson, B., Jonsson, P., Miettinen, V., Ringstad, O., Wesen, C. (1994); Halogenated Organic Compounds in the Marine Environment 1989–1990; TemNord 591; Nordic Council of Ministers, Copenhagen 1994Google Scholar
  47. Pedersen, F., Tyle, H., Niemelä, J.R., Guttmann, B. Lander, L., Wedebrand, A. (1994); Environmental Hazard Classification-Data collection and interpretation guide; TemaNord 1994;589Google Scholar
  48. Rapport sur l'Etat du Rhin-Analyses physico-chimiques et biologiques jusqu'en 1991-CIPR Sept 1993Google Scholar
  49. Rippen, Handbuch Umweltchemikalien (1989) 14, Erg. Lig 3/92Google Scholar
  50. RIWA (1995) Association des Services d'Eau du Rhin et de la Meuse. Tome B: Meuse 1993 Amsterdam 1995.Google Scholar
  51. RIZA-(1994) Nota No 94005 Resultaten van het waterkwahteitsonderzoek in de Maas in Nederland — 1978–1992. Directoraat Generaal RijckswaterstaatGoogle Scholar
  52. Sanchez-Fortun, S., Sanz, F., Santa-Maria, A., Ros, J.M., De Vicente, M.L., Encinas, M.T., Vinagre, E., Barahona, M.V. (1997); Acute sensitivity of three age classes of Artemia salina larvae to seven chlorinated solvents; Bull. Environ. Contam. Toxicol., 59, pp. 445–451Google Scholar
  53. Schubel J.B., Huls A.G. (1984): Überprüfung der Durchführbarkeit von Prüfungsvorschriften und der Aussagekraft der Stufe I und II des Chemikaliengengesetzes, Abschlussbericht; Chemische Werke Hüls, Abt. UmweltschutzGoogle Scholar
  54. Slooff W. (1979); Detection limits of a biological monitoring system based on fish respiration; Bull Environ Contam. Toxicol., 23, 517–523Google Scholar
  55. Slooff W. (1983); Benthic macroinvertebrates and water quality assessment: some toxicological considerations; Aquatic Toxicol., 7, 73, 82Google Scholar
  56. Sloof W., Canton J.H., Hermens J.L. (1983); Comparison of the susceptibility of 22 freshwater species to 15 chemical compounds; Aquatic Toxicol., 4, 113–128Google Scholar
  57. Smith A.D., Bharath, A., Mallard, C., Orr, D. (1991); The acute and chronic toxicity of ten chlorinated organic compounds to the American flagfish (Jordanella floridae); Arch. Environ. Contam. Toxicol., 20, 84–102Google Scholar
  58. TGD (1996)-Technical Guidance Documents in support of the Commission Directive 93/67/EEC on Risk Assessment for new notified substances and the Commission Regulation (EC) 94/1488/EEC on risk assessment for existing substances (Parts I, II, III and IV) EC Catalogue numbers CR-48-96-001-EN-C, CR-48-96-002-EN-C, CR-48-96-003-EN-C, CR-48-96-004-EN-CGoogle Scholar
  59. UN-ECE (United Nations Economic Commission for Europe) (1994); Protocol concerning the Control of Emissions of Volatile Organic Compounds and their Transboundary Fluxes. Annex IV: Classification of volatile organic compounds (VOCs) based on their photochemical ozone creation potential (POCP), UN, Geneva, Switzerland, 92 pp.Google Scholar
  60. UNEP (1998); United Nations Environment Programme, Nairobi, Kenya-The 1987 Montreal Protocol was lastly revised by the Ninth Meeting of the Parties in Montreal, 15–17 September 1997Google Scholar
  61. UN-FCCC (1997); Kyoto Protocol to the United Nations Framework Convention on Climate Change, UN document No FCCC/CP/1997/L.7/Add.1 of 10 December 1997, UNFCCC, Bonn, GermanyGoogle Scholar
  62. US EPA (1980) report no440/5-80-077; Ambient water quality criteria for trichloroethylene; NTIS/PB 81 — 117700, US Department of Commerce, Springfield, VAGoogle Scholar
  63. Veith, G.D., Call, D.J., Broke, L.T. (1979)-Journal of the Fisheries Research Board of Canada 36, 1040–1048Google Scholar
  64. Veith G.D., Call D.J., Brooke L.T. (1983); Structure-toxicity relationships for the fathead minnow, Pimephales promelas: narcotic industrial chemicals; Can. J. Fish. Aquat. Sci., 40, 743–748Google Scholar
  65. Ward G.S., Tolmsoff, A.J., Petrocelli, S.R. (1986); Acute toxicity of trichloroethylene to saltwater organisms; Bull. Environ. Contam. Toxicol., 37, 830–836Google Scholar
  66. WMO (World Meteorological Organization): Global ozone research and monitoring project; Report No 37; Scientific assessment of Ozone Depletion 1994; WMO Geneva, Chapter 13Google Scholar
  67. Yoshioka Y., Mizuno, T., Ose, Y., Sato, T. (1986); The estimation of toxicity of chemicals on fish by physicochemical properties; Chemosphere, 15, 195–203Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Jean-Charles Boutonnet
    • 1
  • Christ De Rooij
    • 2
  • Veronique Garny
    • 3
  • Andre Lecloux
    • 3
  • Roger Papp
    • 4
  • Roy S Thompson
    • 5
  • Dolf Van Wijk
    • 6
  1. 1.Elf Atochem SA, Centre d'Application de LevalloisLevallois-Perret CédexFrance
  2. 2.Solvay SABruxellesBelgium
  3. 3.Euro ChlorBruxellesBelgium
  4. 4.Elf Atochem SAParis la Défense 10France
  5. 5.Zeneca LimitedBrixham Environmental Laboratory, Freshwater Quarry, BrixhamDevonUnited Kingdom
  6. 6.Akzo Nobel Central Research bvArnhemThe Netherlands

Personalised recommendations