Advertisement

Plant Molecular Biology

, Volume 37, Issue 6, pp 897–910 | Cite as

Eucalyptus has a functional equivalent of the Arabidopsis floral meristem identity gene LEAFY

  • Simon G. Southerton
  • Steven H. Strauss
  • Mark R. Olive
  • Rebecca L. Harcourt
  • Veronique Decroocq
  • Xiaomei Zhu
  • Danny J. Llewellyn
  • W. James Peacock
  • Elizabeth S. Dennis
Article

Abstract

Two genes cloned from Eucalyptus globulus, Eucalyptus LeaFy (ELF1 and ELF2), have sequence homology to the floral meristem identity genes LEAFY from Arabidopsis and FLORICAULA from Antirrhinum. ELF1 is expressed in the developing eucalypt floral organs in a pattern similar to LEAFY while ELF2 appears to be a pseudo gene. ELF1 is expressed strongly in the early floral primordium and then successively in the primordia of sepals, petals, stamens and carpels. It is also expressed in the leaf primordia and young leaves and adult and juvenile trees.

The ELF1 promoter coupled to a GUS reporter gene directs expression in transgenic Arabidopsis in a temporal and tissue-specific pattern similar to an equivalent Arabidopsis LEAFY promoter construct. Strong expression is seen in young flower buds and then later in sepals and petals. No expression was seen in rosette leaves or roots of flowering plants or in any non-flowering plants grown under long days. Furthermore, ectopic expression of the ELF1 gene in transgenic Arabidopsis causes the premature conversion of shoots into flowers, as does an equivalent 35S-LFY construct. These data suggest that ELF1 plays a similar role to LFY in flower development and that the basic mechanisms involved in flower initiation and development in Eucalyptus are similar to those in Arabidopsis.

Eucalyptus globulus floral meristem identity gene flower development in situ hybridization LEAFY homologue 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvarez J, Guli CL, Yu X, Smyth DR: terminal flower: a gene affecting inflorescence development in Arabidopsis thaliana. Plant J 2: 103–116 (1992).Google Scholar
  2. 2.
    Andersson CR, Llewellyn DJ, Peacock WJ, Dennis ES: Cell-specific expression of the promoters of two nonlegume hemoglobin genes in a transgenic legume, Lotus corniculatus. Plant Physiol 113: 45–57 (1997).PubMedGoogle Scholar
  3. 3.
    Blazquez MA, Soowal LN, Lee I, Weigel D: Leafy expression and flower initiation in Arabidopsis. Development 124: 3835–3844 (1997).PubMedGoogle Scholar
  4. 4.
    Carr DJ, Carr SGM: Natural groups within the genus Eucalyptus. In: Leeper GW (ed) The Evolution of Living Organisms, pp. 426–445. Melbourne University Press, Melbourne (1962).Google Scholar
  5. 5.
    Coen ES, Meyerowitz EM: The war of the whorls: genetic interactions controlling flower development. Nature 353: 31–37 (1991).CrossRefPubMedGoogle Scholar
  6. 6.
    Coen ES, Romero JM, Elliot R, Murphy G, Carpenter R: FLORICAULA: a homeotic gene required for flower development in Antirrhinum majus. Cell 63: 1311–1322 (1990).CrossRefPubMedGoogle Scholar
  7. 7.
    Dennis ES, Gerlach WL, Pryor AJ, Bennetzen JL, Inglis A, Llewellyn DJ, Sachs MM, Ferl RA, Peacock WJ: Molecular analysis of the alochol dehydrogenase (Adh1) gene of maize. Nucl Acids Res. 12: 178–180 (1984).Google Scholar
  8. 8.
    Don RH, Cox PT, Wainwright BJ, Baker, K, Mattick, JS: ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucl Acids Res 19: 4008 (1991).PubMedGoogle Scholar
  9. 9.
    Drews GN, Bowman JL, Meyerowitz EM: Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 65: 991–1002 (1991).CrossRefPubMedGoogle Scholar
  10. 10.
    Drinnan AN, Ladiges PY: Floral development in the ‘Symphomyrtus group’ of eucalypts (Eucalyptus: Myrtaceae). Aust Syst Bot 4: 553–562 (1991).Google Scholar
  11. 11.
    Gleave AP: A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol 20: 1203–1207 (1992).PubMedGoogle Scholar
  12. 12.
    Harcourt R, Kyozuka J, Zhu X, Southerton S, Llewellyn D, Dennis E, Peacock J: Genetic engineering for sterility in temperate plantation eucalypts. In Potts BM, Borralho NMG, Reid JB, Cromer RN, Tibbits WN, Raymond CA (eds) Eucalypt Plantations: Improving Fibre Yield and Quality, pp. 403–405. Proceedings CRC-IUFRO Conference Hobart, 19–24 February 1995. CRC for Temperate Hardwood Forestry, Hobart, Australia (1995).Google Scholar
  13. 13.
    Hempel FD, Feldman LJ: Bi-directional inflorescence development in Arabidopsis thaliana: acropetal initiation of flowers and basipetal initiation of paraclades. Planta 192: 276–286 (1994).Google Scholar
  14. 14.
    Hempel FD, Weigel D, Mandel MA, Ditta G, Zambryski PC, Feldman LJ, Yanofsky MF: Floral determination and expression of floral regulatory genes in Arabidopsis. Development 124: 3845–3853 (1997).PubMedGoogle Scholar
  15. 15.
    Irish VH, Sussex IM: Function of the APETALA-1 gene during Arabidopsis floral development. Plant Cell 2: 741–753 (1990).PubMedGoogle Scholar
  16. 16.
    Jefferson RA: Assaying chimeric genes in plants: the GUS gene system. Plant Mol Biol Rep 5: 387–405 (1987).Google Scholar
  17. 17.
    Kelly AJ, Bonnlander MB, Meeks-Wagner DR: NFL, the tobacco homolog of FLORICAULA and LEAFY, is transcriptionally expressed in both vegetative and floral meristems. Plant Cell 7: 225–234 (1995).PubMedGoogle Scholar
  18. 18.
    Kyozuka J, Harcourt R, Peacock WJ, Dennis ES: Eucalyptus has functional equivalents of the Arabidopsis AP1 gene. Plant Mol Biol 35: 573–584 (1997).PubMedGoogle Scholar
  19. 19.
    Lazo GR, Stein PA, Ludwig RA: A DNA transformation competent Arabidopsis genomic library in Agrobacterium. Bio/technology 9: 963–967 (1991).CrossRefPubMedGoogle Scholar
  20. 20.
    Mullins KV, Llewellyn DJ, Hartney VJ, Strauss S, Dennis ES: Regeneration and transformation of Eucalyptus camaldulensis. Plant Cell Rep 16: 787–791 (1997).Google Scholar
  21. 21.
    Pryor LD, Knox RB: Operculum development and evolution in eucalypts. Aust J Bot 19: 143–172 (1971).Google Scholar
  22. 22.
    Rottmann WH, Boes TK, Strauss SH: Structure and expression of a LEAFY homolog from Populus. J Cell Biochem (Suppl. 17B): 23 (1993).Google Scholar
  23. 23.
    Valvekens D, Van Montagu M, Van Lijsjebettens M: Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85: 5536–5540 (1988)Google Scholar
  24. 24.
    Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM: LEAFY controls floral meristem identity in Arabidopsis. Cell 69: 843–859 (1992).CrossRefPubMedGoogle Scholar
  25. 25.
    Weigel D, Nilsson O: A developmental switch sufficient for flower initiation in diverse plants. Nature 377: 495–500 (1995).PubMedGoogle Scholar
  26. 26.
    Weigel D, Myerowitz EM: Activation of floral homeotic genes in Arabidopsis. Science 261: 1723–1726 (1993).Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Simon G. Southerton
    • 1
  • Steven H. Strauss
    • 2
  • Mark R. Olive
    • 3
  • Rebecca L. Harcourt
    • 4
  • Veronique Decroocq
    • 5
  • Xiaomei Zhu
    • 3
  • Danny J. Llewellyn
    • 3
  • W. James Peacock
    • 3
  • Elizabeth S. Dennis
    • 3
  1. 1.Department of BiochemistryUniversity of QueenslandSt. LuciaAustralia
  2. 2.Department of Forest ScienceOregon State UniversityCorvallisUSA
  3. 3.CSIRO Plant IndustryCanberraAustralia
  4. 4.CSIRO EntomologyCanberra City
  5. 5.INRA Centre de Bordeaux, UREFVVillenave d';OrnonFrance

Personalised recommendations