Journal of Automated Reasoning

, Volume 22, Issue 4, pp 379–396 | Cite as

Decidability by Resolution for Propositional Modal Logics

  • Renate A. Schmidt


The paper shows that satisfiability in a range of popular propositional modal systems can be decided by ordinary resolution procedures. This follows from a general result that resolution combined with condensing, and possibly some additional form of normalization, is a decision procedure for the satisfiability problem in certain so-called path logics. Path logics arise from normal propositional modal logics by the optimized functional translation method. The decision result provides an alternative method of proving decidability for modal logics, as well as closely related systems of artificial intelligence. This alone is not interesting. A more far-reaching consequence of the result has practical value, namely, many standard first-order theorem provers that are based on resolution are suitable for facilitating modal reasoning.

automated theorem proving resolution decision procedures propositional modal logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auffray, Y. and Enjalbert, P.: Modal theorem proving: An equational viewpoint, J. Logic Comput. 2(3) (1992), 247-297.Google Scholar
  2. 2.
    Bachmair, L., Ganzinger, H. and Waldmann, U.: Superposition with simplification as a decision procedure for the monadic class with equality, in G. Gottlob, A. Leitsch and D. Mundici (eds), Proceedings of the Third Kurt G ö del Colloquium (KGC'93), Lecture Notes in Comput. Sci. 713, Springer, 1993, pp. 83-96.Google Scholar
  3. 3.
    Donini, F. M., Lenzerini, M., Nardi, D. and Schaerf, A.: Reasoning in description logics, in G. Brewka (ed.), Principles in Knowledge Representation, Studies in Logic, Language and Information, CSLI Publications, Stanford, 1996, pp. 191-236.Google Scholar
  4. 4.
    Fariñas del Cerro, L. and Herzig, A.: Linear modal deductions, in E. Lusk and R. Overbeek (eds), Automated Deduction: CADE-9, Lecture Notes in Comput. Sci. 310, Springer, 1988, pp. 487-499.Google Scholar
  5. 5.
    Fariñas del Cerro, L. and Herzig, A.: Automated quantified modal logic, in P. B. Brazdil and K. Konolige (eds), Machine Learning, Meta-Reasoning and Logics, Kluwer, 1989, pp. 301-317.Google Scholar
  6. 6.
    Fariñas del Cerro, L. and Herzig, A.: Modal deduction with applications in epistemic and temporal logics, in D. M. Gabbay, C. J. Hogger and J. A. Robinson (eds), Handbook of Logic in Artificial Intelligence and Logic Programming: Epistemic and Temporal Reasoning, Vol. 4, Clarendon Press, Oxford, 1995, pp. 499-594.Google Scholar
  7. 7.
    Fermüller, C., Leitsch, A., Tammet, T. and Zamov, N.: Resolution Method for the Decision Problem, Lecture Notes in Comput. Sci. 679, Springer, 1993.Google Scholar
  8. 8.
    Gottlob, G. and Fermüller, C. G.: Removing redundancy from a clause, Artif. Intell. 61 (1993), 263-289.Google Scholar
  9. 9.
    Herzig, A.: Raisonnement automatique en logique modale et algorithmes d'unification, Ph.D. Thesis, Univ. Paul-Sabatier, Toulouse, 1989.Google Scholar
  10. 10.
    Herzig, A.: A new decidable fragment of first order logic, 1990, in Abstracts of the Third Logical Biennal, Summer School and Conference in honour of S. C. Kleene, Varna, Bulgaria.Google Scholar
  11. 11.
    Hustadt, U.: Resolution-based decision procedures for subclasses of first-order logic, Forthcoming Ph.D. Thesis, Univ. Saarlandes, Germany, 1998.Google Scholar
  12. 12.
    Hustadt, U. and Schmidt, R. A.: An empirical analysis of modal theorem provers, Preprint, 1997, to appear in J. Applied Non-Classical Logic.Google Scholar
  13. 13.
    Hustadt, U. and Schmidt, R. A.: On evaluating decision procedures for modal logics, in M. Pollack (ed.), Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI'97), Vol. 1, Morgan Kaufmann, 1997, pp. 202-207.Google Scholar
  14. 14.
    Hustadt, U., Schmidt, R. A. and Weidenbach, C.: Optimised functional translation and resolution, in H. de Swart (ed.), Proceedings of the International Conference on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX'98), Lecture Notes in Comput. Sci. 1397, Springer, 1998, pp. 36-37.Google Scholar
  15. 15.
    Jónsson, B. and Tarski, A.: Boolean algebras with operators, Part I, Amer. J. Math. 73 (1951), 891-939.Google Scholar
  16. 16.
    Jónsson, B. and Tarski, A.: Boolean algebras with operators, Part II, Amer. J. Math. 74 (1952), 127-162.Google Scholar
  17. 17.
    Joyner, W. H., Jr.: Resolution strategies as decision procedures, J. ACM 23(3) (1976), 398-417.Google Scholar
  18. 18.
    Ladner, R. E.: The computational complexity of provability in systems of modal propositional logic, SIAM J. Comput. 6(3) (1977), 467-480.Google Scholar
  19. 19.
    Ohlbach, H. J.: A Resolution Calculus for Modal Logics, Ph.D. Thesis, Univ. Kaiserslautern, Germany, 1988.Google Scholar
  20. 20.
    Ohlbach, H. J.: A resolution calculus for modal logics, in E. Lusk and R. Overbeek (eds), Automated Deduction: CADE-9, Lecture Notes in Comput. Sci. 310, Springer, 1988, pp. 500-516.Google Scholar
  21. 21.
    Ohlbach, H. J.: Semantics based translation methods for modal logics, J. Logic Comput. 1(5) (1991), 691-746.Google Scholar
  22. 22.
    Ohlbach, H. J. and Schmidt, R. A.: Functional translation and second-order frame properties of modal logics, J. Logic Comput. 7(5) (1997), 581-603.Google Scholar
  23. 23.
    Robinson, J. A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1) (1965), 23-41.Google Scholar
  24. 24.
    Schmidt, R. A.: Optimised Modal Translation and Resolution, Ph.D. Thesis, Universität des Saarlandes, Saarbrücken, Germany, 1997.Google Scholar
  25. 25.
    Schmidt, R. A.: E-unification for subsystems of S4, in T. Nipkow (ed.), Rewriting Techniques and Applications: 9th International Conference, RTA'98, Proceedings, Lecture Notes in Comput. Sci. 1379, Springer, 1998, pp. 106-120.Google Scholar
  26. 26.
    Schmidt, R. A.: Resolution is a decision procedure for many propositional modal logics, in M. Kracht, M. de Rijke, H. Wansing, and M. Zakharyaschev (eds), Advances in Modal Logic, Vol. 1, Lecture Notes 87, CSLI Publications, Stanford, 1998, pp. 189-208.Google Scholar
  27. 27.
    Schmidt-Schauß, M. and Smolka, G.: Attributive concept description with complements, Artif. Intell. 48: (1991), 1-26.Google Scholar
  28. 28.
    van Benthem, J.: Beyond accessibility: Functional models for modal logic, in M. De Rijke (ed.), Diamonds and Defaults, Kluwer, Dordrecht, 1993.Google Scholar
  29. 29.
    Zamov, N. K.: Modal resolutions, Soviet Math. 33(9) (1989), 22-29. Translated from Izv. Vyssh. Uchebn. Zaved. Mat. 9(328) (1989), 22-29. ?Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Renate A. Schmidt
    • 1
  1. 1.Department of Computing and MathematicsManchester Metropolitan UniversityManchesterU.K. e-mail

Personalised recommendations