Plant Molecular Biology

, Volume 38, Issue 1–2, pp 111–125 | Cite as

Exocytosis in plants

Abstract

Exocytosis is the final event in the secretory pathway and requires the fusion of the secretory vesicle membrane with the plasma membrane. It results in the release to the outside of vesicle cargo from the cell interior and also the delivery of vesicle membrane and proteins to the plasma membrane. An electrophysiological assay that measures changes in membrane capacitance has recently been used to monitor exocytosis in plants. This complements information derived from earlier light and electron microscope studies, and allows both transient and irreversible fusion of single exocytotic vesicles to be followed with high resolution in protoplasts. It also provides a tool to investigate bulk exocytotic activity in single protoplasts under the influence of cytoplasmic modulators. This research highlights the role of intracellular Ca2+, GTP and pressure in the control of exocytosis in plants.

In parallel to these functional studies, plant proteins with the potential to regulate exocytosis are being identified by molecular analysis. In this review we describe these electrophysiological and molecular advances, and emphasise the need for parallel biochemical work to provide a complete picture of the mechanisms controlling vesicle fusion at the plasma membrane of plant cells.

exocytosis endocytosis vesicle fusion patch clamp membrane capacitance plasma membrane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alb JG, Jr, Kearns MA, Bankaitis VA: Phospholipid metabolism and membrane dynamics. Curr Opin Cell Biol 80: 534–541 (1996).Google Scholar
  2. 2.
    Albillos A, Dernick G, Horstmann H, Almers W, Alvarez de Toledo G, Lindau M: The exocytotic events in chromaffin cells revealed by patch amperometry. Nature 389: 509–512 (1997).Google Scholar
  3. 3.
    Almers W, Neher E: Gradual and stepwise changes in the membrane capacitance of rat peritoneal mast cells. J Physiol 386: 205–217 (1987).Google Scholar
  4. 4.
    Almers W: Exocytosis. Annu Rev Physiol 52: 607–624 (1990).Google Scholar
  5. 5.
    Alvarez de Toledo G, Fernandez-Chacùn R, Fernandez JM: Release of secretory products during transient vesicle fusion. Nature 363: 554–558 (1993).Google Scholar
  6. 6.
    Aridor M, Balch WE: Timing is everything. Nature 383: 220–221 (1996).Google Scholar
  7. 7.
    Augustin GJ, Neher E: Calcium requirements for secretion in bovine chromaffin cells. J Physiol 450: 247–271 (1992).Google Scholar
  8. 8.
    Balch WE: Small GTP-binding proteins in vesicular transport. Trends Biochem Sci 15: 473–477 (1990).Google Scholar
  9. 9.
    Baldan B, Guzzo F, Filippini F, Gasparian M, LoSchiavo F, Vitale A, de Vries SC, Mariani P, Terzi M: The secretory nature of the lesion of carrot cell variants ts11, rescuable by endochitinase. Planta 203: 381–389 (1997).Google Scholar
  10. 10.
    Bassham DC, Gal S, da Silva Concieção A, Raikhel N V: An Arabidopsis syntaxin homologue isolated by functional complementation of a yeast pep12 mutant. Proc Natl Acad Sci USA 92: 7262–7266 (1995).Google Scholar
  11. 11.
    Battey N, Carroll A, van Kesteren P, Taylor A, Brownlee C: The measurement of exocytosis in plant cells. J Exp Bot 47: 717–728 (1996).Google Scholar
  12. 12.
    Battey NH, Blackbourn HD: The control of exocytosis in plant cells. New Phytol 125: 307–338 (1993).Google Scholar
  13. 13.
    Bednarek SY, Reynolds TL, Schroeder M, Grabowski R, Hengst L, Gallwitz D, Raikhel NV: A small GTP-binding protein from Arabidopsis thaliana functionally complements the yeast YPT6 null mutant. Plant Physiol 104: 591–596 (1994).Google Scholar
  14. 14.
    Bethke P, Schuurink R, Jones RL: Hormonal signalling in cereal aleurone. J Exp Bot 48: 1337–1356 (1997).Google Scholar
  15. 15.
    Blackbourn HD, Battey NH: Annexin-mediated secretory vesicle aggregation in plants. Physiol Plant 87: 528–534 (1993).Google Scholar
  16. 16.
    Blumenthal R, Pak CC, Raviv Y, Krumbiegel M, Bergelson LD, Morris SJ, Lowry RJ: Transient domains induced by influenza haemagglutinin during membrane fusion. Mol Memb Biol 12: 135–142 (1995).Google Scholar
  17. 17.
    Borg S, Brandstrup B, Jensen TJ, Poulsen C: Identification of new protein species among 33 different small GTP-binding proteins encoding by cDNAs from Lotus japonicus, and expression of corresponding mRNAin developing root nodules. Plant J 11: 237–250 (1997).Google Scholar
  18. 18.
    Brummell DA, Camirand A, MacLachlan GA: Differential distribution of xyloglucan glycosyl transferase in pea Golgi dictyosomes and secretory vesicles. J Cell Sci 96: 705–710 (1990).Google Scholar
  19. 19.
    Carroll AD, Moyen C, van Kesteren WJP, Tooke F, Battey NH, Brownlee C: Ca2+, annexins and GTP control exocytosis from maize root cap protoplasts. Plant Cell, in press (1998).Google Scholar
  20. 20.
    Chaffey NJ: Structure and function of the grass ligule: the endomembrane system of the adaxial epidermis of the membranous ligule of Lolium temulentum L. (Poaceae). Ann Bot 76: 103–112 (1995).Google Scholar
  21. 21.
    Cheon CI, Lee NG, Siddique ABM, Bal AK, Verma DPS: Roles of plant homologs of Rab 1p and Rab 7p in the biogenesis of the peribacteroid membrane, a subcellular compartment formed de novo during root nodule symbiosis. EMBO J 12: 4125–4135 (1993).Google Scholar
  22. 22.
    Chernomordik LV, Melikyan GB, Chizmadzhev YA: Biomembrane fusion: a new concept derived from model studies using two interacting planar lipid bilayers. Biochim Biophys Acta 906: 309–352 (1987).Google Scholar
  23. 23.
    Chernomordik LV, Vogel SS, Sokoloff A, Onaran HO, Leikina EA, Zimmerberg J: Lysolipids reversibly inhibit Ca2+-, GTP-and pH-dependent fusion of biological membranes. FEBS Lett 318: 71–76 (1993).Google Scholar
  24. 24.
    Chernomordik L, Kozlov MM, Zimmerberg J: Lipids in biological membrane fusion. J Memb Biol 146: 1–14 (1995).Google Scholar
  25. 25.
    Chernomordik L, Chanturiya A, Green J, Zimmerberg J: The hemifusion intermediate and its conversion to complete fusion: regulation by membrane composition. Biophys J 69: 922–929 (1995).Google Scholar
  26. 26.
    Chow RH, von Rüden L, Neher E: Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356: 60–63 (1992).Google Scholar
  27. 27.
    Chow RH, von Rüden L: Electrochemical detection of secretion from single cells. In: Sakmann B, Neher E (eds) Single Channel Recording, 2nd ed., pp. 245–275. Plenum Press, New York (1995).Google Scholar
  28. 28.
    Clark GB, Roux SJ: Annexins of plant cells. Plant Physiol 109: 1133–1139 (1995).Google Scholar
  29. 29.
    Coorssen JR, Schmitt H, Almers W: Ca2+-triggered massive exocytosis in Chinese hamster ovary cell. EMBO J 15: 3787–3791 (1996).Google Scholar
  30. 30.
    Cosgrove DJ, Hedrich R: Stretch activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. Planta 186: 143–153 (1991).Google Scholar
  31. 31.
    Cram WJ: Pinocytosis in plants. New Phytol 84: 1–17 (1980).Google Scholar
  32. 32.
    Creutz CE: The annexins and exocytosis. Science 258: 924–931 (1992).Google Scholar
  33. 33.
    Da Silva Conceição A, Marty-Mazars, Bassham DC, Sanderfoot AA, Marty F, Raikhel NV: The Syntaxin homolog At-PEP12p resides on a late post-Golgi compartment in plants. Plant Cell 9: 571–582 (1997).Google Scholar
  34. 34.
    Danieli T, Pelletier SL, Henis YI, White JM: Membrane fusion mediated by influenza hemagglutinin requires the concerted action of at least three hemagglutinin trimers. J Cell Biol 133: 559–569 (1996).Google Scholar
  35. 35.
    Diekmann W, Hedrich R, Raschke K, Robinson DG: Osmocytosis and vacuolar fragmentation in guard cell protoplasts: their relevance to osmoticalliy-induced volume changes in guard cells. J Exp Bot 44: 1569–1577 (1993).Google Scholar
  36. 36.
    Diekmann W, Herkt B, Low PS, Nürnberger T, Scheel D, Terschüren C, Robinson DG: Visualization of elicitor-binding loci at the plant surface. Planta 195: 126–137 (1994).Google Scholar
  37. 37.
    Donnelly SR, Moss SE: Annexins in the secretory pathway. Cell Mol Life Sci 53: 533–538 (1997).Google Scholar
  38. 38.
    Edwardson JM, Marcinak SJ: Molecular mechanism in exocytosis. J Memb Biol 146: 113–122 (1995).Google Scholar
  39. 39.
    Felle H: Auxin causes oscillations of cytosolic free calcium and pH in Zea mays coleoptiles. Planta 174: 495–499 (1988).Google Scholar
  40. 40.
    Fernandez JM: Cellular and molecular mechanics by atomic force microscopy. Capturing the exocytotic fusion pore in vivo? Proc Natl Acad Sci USA 94: 9–10 (1997).Google Scholar
  41. 41.
    Ferro-Novick S, Jahn R: Vesicle fusion from yeast to man. Nature 370: 191–193 (1994).Google Scholar
  42. 42.
    Franzusoff A, Redding K, Crosby J, Fuller RS, Schekman R: Localization of components involved in protein transport and processing through the yeast Golgi apparatus. J Cell Biol 112: 27–37 (1991).Google Scholar
  43. 43.
    Gillis KD: Techniques for membrane capacitance measurements. In: Sakmann B, Neher E (eds) Single Channel Recording, 2nd ed., pp. 155–198. Plenum Press, New York (1995).Google Scholar
  44. 43a.
    Gordon-Kamm WJ, Steponkus PL: The influence of coldacclimation on the behaviour of the plasma membrane following osmotic contraction of isolated protoplasts. Protoplasma 123: 161–173 (1984).Google Scholar
  45. 44.
    Gradmann D, Robinson DG: Does turgor prevent endocytosis in plant cells? Plant Cell Envir 12: 151–154 (1989).Google Scholar
  46. 45.
    Hager A, Brich M, Debus G, Edel H-G, Priester T: Membrane metabolism and growth. Phospholipases, protein kinase and exocytotic processes in coleoptiles of Zea mays. In: Tazawa M (ed) Plant Water Relations and Growth Under Stress, Proceedings of the Yamada Conf. 22, Osaka, pp. 275–282. Yamada Science Foundation, Osaka (1989)Google Scholar
  47. 46.
    Hay JC, Martin TFJ: Phosphatidylinositol transfer protein is required for ATP-dependent priming of Ca2+-activated secretion. Nature 366: 572–575 (1993).Google Scholar
  48. 47.
    Hay JC, Fisette PL, Jenkins GH, Fukami K, Takenawa T, Anderson RA, Martin TFJ: ATP-dependent inositide phosphorylation required for Ca2+-activated secretion. Nature 374: 173–177 (1995).Google Scholar
  49. 48.
    Heinemann C, Chow RH, Neher E, Zucker RS: Kinetics of the secretory response in bovine chromaffin cells following flash photolysis of caged Ca2+. Biophys J 67: 2546–2557 (1994)Google Scholar
  50. 49.
    Heinemann C, von Rüden L, Chow RH, Neher E: A twostep model of secretion control in neuroendocrine cells. Eur J Physiol 424: 105–112 (1993).Google Scholar
  51. 50.
    Helm CA, Israelachvili JN, McGuiggan PM: Molecular mechanisms and forces involved in the adhesion and fusion of amphiphilic bilayers. Science 246: 919–922 (1989).Google Scholar
  52. 51.
    Homann U, Tester M: Patch clamp measurements of capacitance to study exocytosis and endocytosis. Trends Plant Sci 3: 110–114 (1998).Google Scholar
  53. 52.
    Homann U, Tester M: Ca2+-independent and Ca2+/GTPbinding protein-controlled exocytosis in a plant cell. Proc Natl Acad Sci USA 94: 6565–6570 (1997).Google Scholar
  54. 53.
    Homann U: Osmotically induced excursions in the surface area in guard cell protoplasts. Planta (accepted).Google Scholar
  55. 54.
    Hoshino T, Mizutani A, Chida M, Hidaka H, Mizutani J: Plant annexin form homodimer during Ca2+-dependent liposome aggregation. Biochem Mol Biol Int 35: 749–755 (1995).Google Scholar
  56. 55.
    Kasai H, Takagi H, Ninomiya Y, Kishimoto T, Ito K, Yoshida A, Yoshioka T, Miyashita Y: Two components of exocytosis and endocytosis in phaeochromocytome cells studied using caged Ca2+ compounds. J Physiol 494: 53–65 (1996).Google Scholar
  57. 56.
    Kearns BG, McGee TP, Mayinger P, Gedvilaite A, Phillips SE, Kagiwada S, Bankaitis VA: Essential role for diacylglycerol in protein transport from the yeast Golgi complex. Nature 387: 101–105 (1997).Google Scholar
  58. 57.
    Kell A, Donath E: The generation of non-sperical oat protoplasts indicates that hyperpolarization is both necessary and sufficient for stimulating membrane incorporation into plasma membrane. J Exp Bot 42: 637–643 (1991).Google Scholar
  59. 58.
    Kreft M, Zorec R: Cell-attached measurements of attofarad capacitance steps in rat melanotrophs. Pflügers Arch 434: 212–214 (1997).Google Scholar
  60. 59.
    Kristen U, Lockhausen J: Estimation of Golgi membrane flow rates in ovary glands of Aptenia cordifolia using cytochalasin B. Eur J Cell Biol 29: 262–267 (1983).Google Scholar
  61. 60.
    Kroh M, Knuiman B: Exocytosis in non-plasmolysed and plasmolysed tobacco pollen tubes. Planta 166: 287–299 (1985).Google Scholar
  62. 61.
    Lambrechts D, Schroeder JI, Verbelen JP: The influence of osmolarity on the surface properties of the plasma membrane of isolated guard cell protoplasts of Vicia faba L. Plant Physiol (Life Sci Adv) 11: 25–32 (1992).Google Scholar
  63. 62.
    Lewis SA, de Moura JLC: Incorporation of cytoplasmic vesicles into apical membrane of mammalian urinary bladder epithelium. Nature 297: 685–688 (1982).Google Scholar
  64. 63.
    Lindau M: Time-resolved capacitance measurements: monitoring exocytosis in single cells. Q Rev Biophys 24: 75–101 (1991).Google Scholar
  65. 64.
    Lindau M, Neher E: Patch-clamp technique for time-resolved capacitance measurements in single cells. Pflügers Arch 411: 137–145 (1988).Google Scholar
  66. 65.
    Lindau M, Almers W: Structure and formation of fusion pores in exocytosis and ectoplasmic fusion. Curr Opin Cell Biol 7: 509–517 (1995).Google Scholar
  67. 66.
    Lollike K, Borregaard N, Lindau M: The exocytotic fusion pore of small granules has a conductance similar to an ion channel. J Cell Biol 129: 99–104 (1995).Google Scholar
  68. 67.
    Low PS, Chandra S: Endocytosis in plants. Annu Rev Plant Physiol Plant Mol Biol 45: 609–631 (1994).Google Scholar
  69. 68.
    Martin TFJ: Stages of regulated exocytosis. Trends Cell Biol 7: 271–276 (1997).Google Scholar
  70. 69.
    Meers P, Mealy T, Parlotsky N, Tauber AI: Annexin Imediated vesicular aggregation: mechanism and role in human neutrophils. Biochemistry 31: 6372–6382 (1992).Google Scholar
  71. 70.
    Meers P, Bentz J, Alford D, Nir S, Papahadjopoulos D, Hong K: Synexin enhances the aggregation rate but not the fusion rate of liposomes. Biochemistry 27: 4430–4439 (1988).Google Scholar
  72. 71.
    Monck JR, Fernandez JM: The exocytotic fusion pore. J Cell Biol 119: 1395–1404 (1992).Google Scholar
  73. 72.
    Monck JR, Fernandez JM: The fusion pore and mechanisms of biological membrane fusion. Curr Opin Cell Biol 8: 524–533 (1996).Google Scholar
  74. 73.
    Moore I, Schell J, Palme K: Subclass-specific sequence motifs identified in Rab GTPases. Trends Biochem Sci 20: 10–12 (1995).Google Scholar
  75. 74.
    Moser T, Neher E: Estimation of mean exocytotic vesicle capacitance in mouse adrenal chromaffincells. Proc Natl Acad Sci USA 94: 6735–6740 (1997).Google Scholar
  76. 75.
    Moser T, Chow RH, Neher E: Swelling induced catecholamine secretion recorded from single chromaffin cells. Pflügers Arch 431: 196–203 (1995).Google Scholar
  77. 76.
    Nanavati C, Markin VS, Oberhauser AF, Fernandez JM: The exocytotic fusion pore modeled as a lipidic pore. Biophys J 63: 1118–1132 (1992).Google Scholar
  78. 77.
    Napier RM, Venis MA: Tansley Review No. 79: Auxin action and auxin-binding proteins. New Phytol 129: 167–201 (1995).Google Scholar
  79. 78.
    Neher E, Marty A: Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci USA 79: 6712–6716 (1982).Google Scholar
  80. 79.
    Nuoffer C, Balch WE: GTPases: multifunctional molecular switches regulating vesicular traffic. Annu Rev Biochem 63: 949–990 (1994).Google Scholar
  81. 80.
    Oberhauser AF, Monck JR, Fernandez JM: Events leading to the opening and closing of the exocytotic fusion pore have markedly different temperature dependencies. Kinetic analysis of single fusion events in patch-clamped mousemast cells. Biophys J 61: 800–809 (1992).Google Scholar
  82. 81.
    Okada Y, Hazama A, Hashimoto A, Maruyama Y, Kubo M: Exocytosis upon osmotic swelling in human epithelial cells. Biochim Biophys Acta 1107: 201–205 (1992).Google Scholar
  83. 82.
    Park YS, Song OK, Kwak JM, Hong SW, Lee HH, Nam HG: Functional complementation of yeast vesicular transport mutation ypt-1 by Brassica napus cDNA clone encoding a small GTP-binding protein. Plant Mol Biol 26: 1725–1735 (1994).Google Scholar
  84. 83.
    Parsons TD, Coorssen JR, Horstmann H, Lee AK, Tse FW, Almers W: The last seconds in the life of a secretory vesicle. Cold Spring Harb Symp Quant Biol 60: 389–396 (1995).Google Scholar
  85. 84.
    Penner R, Neher E: The role of calcium in stimulus-secretion coupling in excitable and non-excitable cells. J Exp Biol 139: 329–345 (1988).Google Scholar
  86. 85.
    Penner R: Multiple signaling pathways control stimulussecretion in rat peritoneal mast cells. Proc Natl Acad Sci USA 85: 9856–9860 (1988).Google Scholar
  87. 86.
    Pfeifer W: Auxin induced exocytosis of acid phosphatase in coleoptiles from Zea mays. Physiol Plant 98: 773–779 (1996).Google Scholar
  88. 87.
    Phillips GD, Preshaw C, Steer MW: Dictyosome vesicle production and plasma membrane turnover in auxin-stimulated outer epidermal cells of coleoptile segments from Avena sativa (L.) Protoplasma 145: 59–65 (1988).Google Scholar
  89. 88.
    Pollard HB, Rojas E, Pastor RW, Rojas EM, Guy HR, Burns AL: Synexin: molecular mechanism of calcium-dependent membrane fusion and voltage dependent calcium-channel activity. Ann New York Acad Sci 635: 328–351 (1991).Google Scholar
  90. 89.
    Pope DG, Thorpe J R, Al-Azzawi MJ, Hall JL: The effect of cytochalasin B on the rate of growth and ultrastructure of wheat coleoptiles and maize roots. Planta 144: 373–383 (1979).Google Scholar
  91. 90.
    Popov SV, Poo M: Synaptotagmin: a calcium-sensitive inhibitor of exocytosis? Cell 73: 1247–1249 (1993).Google Scholar
  92. 91.
    Pryer NK, Wuestehube LJ, Schekman R: Vesicle-mediated protein sorting. Annu Rev Biochem 61: 471–516 (1992).Google Scholar
  93. 92.
    Pusch M, Neher E: Rates of diffusional exchange between small cells and a measuring patch pipette. Pflügers Arch 411: 204–211 (1988).Google Scholar
  94. 93.
    Quaite E, Parker RE, Steer MW: Plant cell extension: structural implications for the origin of the plasma membrane. Plant Cell Envir 6: 429–432 (1983).Google Scholar
  95. 94.
    Quatrano RS, Shaw SL: Role of the cell wall in the determination of cell polarity and the plane of cell division in Fucus embryos. Trends Plant Sci 2: 15–21 (1997).Google Scholar
  96. 95.
    Robinson, DG: Clathrin-mediated trafficking. Trends Plant Sci 1: 349–355 (1996).Google Scholar
  97. 96.
    Rothman JE, Orci L: Molecular dissection of the secretory pathway. Nature 355: 409–415 (1992).Google Scholar
  98. 97.
    Rothman JE: Mechanisms of intracellular protein transport. Nature 372: 55–63 (1994).Google Scholar
  99. 98.
    Rupnik M, Zorec R: Cytosolic chloride ions stimulate Ca2+induced exocytosis in melanotrophs. FEBS Lett 303: 221–223 (1992).Google Scholar
  100. 99.
    Scepek S, Lindau M: Focal exocytosis by eosinophils-compound exocytosis and cumulative fusion. EMBO J 12: 1811–1817 (1993).Google Scholar
  101. 100.
    Scheetz MP, Dai J: Modulation of membrane dynamics and cell motility by membrane tension. Trends Cell Biol 6: 85–89 (1996).Google Scholar
  102. 101.
    Schneider SW, Sritharan KC, Geibel JP, Oberleithner H, Jena BP: Surface dynamics in living acinar cells imaged by atomic force microscopy: identification of plasma membrane structures involved in exocytosis. Proc Natl Acad Sci USA 94: 316–321 (1997).Google Scholar
  103. 102.
    Sikdar SK, Zorec R, Mason WT: cAMP directly facilitates Ca-induced exocytosis in bovine lactotrophs. FEBS Lett 273: 150–154 (1990).Google Scholar
  104. 103.
    Smith CB, Betz WJ: Simultaneous independent measurement of endocytosis and exocytosis. Nature 380: 531–534 (1996).Google Scholar
  105. 104.
    Staehelin LA, Moore I: The plant Golgi apparatus: structure, functional organization and trafficking mechansisms. Annu Rev Plant Physiol Plant Mol Biol 46: 261–288 (1995).Google Scholar
  106. 105.
    Steer MW, Steer JM: Tansley Review No. 16: Pollen tube tip growth. New Phytol 111: 323–358 (1989).Google Scholar
  107. 106.
    Steer MW: Plasma membrane turnover in plant cells. J Exp Bot 39: 987–996 (1988).Google Scholar
  108. 107.
    Steer MW: The role of calcium in exocytosis and endocytosis in plant cells. Physiol Plant 72: 213–220 (1988).Google Scholar
  109. 108.
    Steponkus PL: Behaviour of the plasma membrane during osmotic excursions. In: Hawes CR, Coleman JOD, Evans DE (eds) Endocytosis, Exocytosis and Vesicle Traffic in Plants, pp. 103–128. Cambridge University Press, Cambridge, UK (1991).Google Scholar
  110. 109.
    Steyer JA, Horstmann H, Almers W: Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature 388: 474–478 (1997).Google Scholar
  111. 110.
    Sudhof TC: The synaptic vesicle cycle: a cascade of proteinprotein interactions. Nature 375: 645–653 (1995).Google Scholar
  112. 111.
    Swairjo MA, Seaton BA: Annexin structure and membrane interactions: a molecular perspective. Annu Rev Biophys Biomol Struct 23: 193–213 (1994).Google Scholar
  113. 112.
    Swairjo MA, Roberts MF, Campos M-B, Dedman JR, Seaton BA: Annexin V binding to the outer leaflet of small unilamellar vesicles leads to altered inner-leaflet properties: 31P and 1H-NMR studies. Biochemistry 33: 10944–10950 (1994).Google Scholar
  114. 113.
    Tagaya M, Wilson DW, Brunner M, Arango N, Rothman JE: Domain structure of an N-ethylmaleimide-sensitive fusion protein involved in vesicular transport. J Biol Chem 268: 2662–2666 (1993).Google Scholar
  115. 114.
    Taylor AR, Roberts SK, Brownlee C: Calcium and related channels in fertilization and early development of Fucus. Phil Trans R Soc Ser B 299: 185–197 (1992).Google Scholar
  116. 115.
    Thiel G, Rupnik M, Zorec R: Raising the cytosolic Ca2+ concentration increases the membrane capacitance of maize coleoptile protoplasts: evidence for Ca2+-stimulated exocytosis. Planta 195: 305–308 (1994).Google Scholar
  117. 116.
    Thiel G, Kreft M, Zorec R: Unitary exocytotic and endocytotic events in Zea mays coleoptile protoplasts. Plant J 13: 101–104 (1998).Google Scholar
  118. 117.
    Thomas P, Lee AK, Wong JG, Almers W: A triggered mechansim retrives membrane in seconds after Ca2+stimulated exocytosis in single pituary cells. J Cell Biol 124: 667–675 (1994).Google Scholar
  119. 118.
    Ueda T, Anai T, Tsukaya H, Hirara A, Uchimiya H: Characterisation and subcellular localization of a small GTPbinding protein (Ara-4) from Arabidopsis: conditional expression under control of the promoter of the gene for heat-shock protein HSP81–1. Mol Gen Genet 250: 533–539 (1996).Google Scholar
  120. 119.
    Verma DPS, Cheon C-I, Hong Z: Small GTP-binding proteins and membrane biogenesis in plants. Plant Physiol 106: 1–6 (1994).Google Scholar
  121. 120.
    White JM: Membrane fusion: the influenza paradigm. Cold Spring Harb Symp Quant Biol 60: 581–588 (1996).Google Scholar
  122. 121.
    Wichmann H, Hengst L, Gallwitz D: Endocytosis in yeast: evidence for the involvement of a small GTP-binding protein (Ypt7p). Cell 71: 1131–1142 (1992).Google Scholar
  123. 122.
    Wolfe J, Steponkus PL: Mechanical properties of the plasma membrane of isolated plant protoplasts. Plant Physiol 71: 276–285 (1983).Google Scholar
  124. 123.
    Wolfe J, Steponkus PL: The stress-strain relation of the plasma membrane of isolated plant protoplasts. Biochim Biophys Acta 643: 663–668 (1981).Google Scholar
  125. 124.
    Zimmerberg J, Vogel SS, Chernomordik LV: Mechanisms of membrane fusion. Annu Rev Biophys Biomol Struct 22: 433–466 (1993).Google Scholar
  126. 125.
    Zorec R, Henigman F, Mason WT, Kordas M: Electrophysiological study of hormone secretion by single adenohypophyseal cells. Meth Neurosci 4: 194–209 (1991).Google Scholar
  127. 126.
    Zorec R, Tester M: Cytoplasmic Ca2+ stimulates exocytosis in a plant secretory cell. Biophys J 63: 864–867 (1992).Google Scholar
  128. 127.
    Zorec R, Tester M: Rapid pressure driven exocytosisendocytosis cycle in a single plant cell. FEBS Lett 333: 283–286 (1993).Google Scholar
  129. 128.
    Zupancic G, Kocmur L, Veranic P, Grilc S, Kordas M, Zorec R: The separation of exocytosis from endocytosis in rat melanotroph membrane capacitance records. J Physiol 480: 539–552 (1994).Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  1. 1.A. van Haller Institute for Plant SciencesUniversity of GöttingenGÖuml;ttingenGermany

Personalised recommendations