Advertisement

Acta Applicandae Mathematica

, Volume 54, Issue 1, pp 1–25 | Cite as

Some Local Properties of Bäcklund Transformations

  • M. Marvan
Article

Abstract

For Bäcklund transformations, treated as relations in the categoryof diffieties, local conditions of effectivity and normality are introduced,having implications for the solution generating properties. We check themfor the pKdV, the sine-Gordon, and the Tzitzéica equation.

diffiety Bäcklund transformation permutability nonlinear superposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ablowitz, M. J. and Segur, H.: Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981.Google Scholar
  2. 2.
    Anderson, R. L. and Fokas, A. S.: Group theoretical nature of B Bäcklund transformations, Lett. Math. Phys. 3(1979), 117–126.Google Scholar
  3. 3.
    Bianchi, L.: Lezioni di Geometria Differenziale, Vol. I, Part II, Zanichelli, Bologna, 1927.Google Scholar
  4. 4.
    Bernstein, I. N. and Rosenfel’d, B. I.: Homogeneous spaces of infinite dimensional Lie algebras and characteristic classes of foliations, Uspekhi Mat. Nauk 28(4) (1973), 103–138 (in Russian).Google Scholar
  5. 5.
    Brezhnev, Yu. V.: Darboux transformation and some multi-phase solutions of the Dodd–Bullough–Tzitzéica equation: U xt = eU - e-2U, Phys. Lett. A 211(1996), 94–100.Google Scholar
  6. 6.
    Dodd, R. K. and Bullough, R. K.: Bäcklund transformations for the sine-Gordon equations, Proc. Roy. Soc. London A 351(1976), 499–523.Google Scholar
  7. 7.
    Dodd, R. K. and Bullough, R. K.: Polynomial conserved densities for the sine-Gordon equations, Proc. Roy. Soc. London A 352(1977), 481–503.Google Scholar
  8. 8.
    van Eck, H. N.: The explicit form of the Lie algebra of Wahlquist and Estabrook. A presentation problem, Nederl. Akad. Wetensch. Proc. Ser. A 86(1983), 149–164, 165–172.Google Scholar
  9. 9.
    Finley III, J. D.: The Robinson–Trautman type III prolongation structure contains K 2, Comm. Math. Phys. 178(1996), 375–390.Google Scholar
  10. 10.
    Finley III, J. D. and McIver, J. K.: Prolongation to higher jets of Estabrook–Wahlquist coverings for PDE’s, Acta Appl. Math. 32(1993), 197–225.Google Scholar
  11. 11.
    Finley III, J. D. and McIver, J. K.: Infinite-dimensional Estabrook–Wahlquist prolongations for the sine-Gordon equation, J. Math. Phys. 36(1995), 5707–5734.Google Scholar
  12. 12.
    Fordy, A. P.: Prolongation structures of nonlinear evolution equations, in: A. P. Fordy (ed.), Soliton Theory: A Survey of Results, Manchester Univ. Press, 1990.Google Scholar
  13. 13.
    Hazewinkel, M., Capel, H. W. and de Jager, E. M. (eds.): KdV’95, Acta Appl. Math. 39(1-3) (1995).Google Scholar
  14. 14.
    Hermann, R.: Geometric Theory of Non-Linear Differential Equations, Bäcklund Transformations, and Solitons, Part B, Interdiscip. Math. 14, Math. Sci. Press, Brookline, 1977.Google Scholar
  15. 15.
    Hirota, R. and Satsuma, J.: A simple structure of superposition formula of the Bäcklund transformation, J. Phys. Soc. Japan 45(1978), 1741–1750.Google Scholar
  16. 16.
    Hoenselaers, C.: The sine-Gordon prolongation algebra, Progr. Theor. Phys. 74(1985), 645–654.Google Scholar
  17. 17.
    Kaptsov, O._V. and Shan’ko, Yu. V.: Trilinear representation and the Moutard transformation for the Tzitzéica equation, Preprint solv-int/9704014.Google Scholar
  18. 18.
    Krasil’shchik, I._S.: Notes on coverings and Bäcklund transformations, Preprint ESI 260, Vienna, 1995 (http://www.esi.ac.at).Google Scholar
  19. 19.
    Krasil’shchik, I. S. and Vinogradov, A. M.: Nonlocal trends in the geometry of differential equations: symmetries, conservation laws, and Bäcklund transformations, Acta Appl. Math. 15 (1989), 161–209.Google Scholar
  20. 20.
    Krasil’shchik, I. S., Lychagin, V. V. and Vinogradov, A. M.: Geometry of Jet Spaces and Nonlinear Differential Equations, Gordon and Breach, New York, 1986.Google Scholar
  21. 21.
    Lamb, G. L., Jr.: Bäcklund transformations at the turn of the century, in: R. M. Miura (ed.), Bäcklund Transformations, Proc. Conf. Nashville,Tennessee, 1974, Lecture Notes in Math. 515, Springer, Berlin, 1975, pp. 69–79.Google Scholar
  22. 22.
    Lamb, G. L., Jr.: Bäcklund transformations for certain nonlinear evolution equations, J. Math. Phys. 15(1974), 2157–2165.Google Scholar
  23. 23.
    Markov, Yu. A.: On a class of exact solutions of the kinetic model of equilibrium plasma, Teor. Mat. Fiz. 91(1992), 129–141.Google Scholar
  24. 24.
    Marvan, M.: On the \(C\)-spectral sequence with ‘general’ coefficients, in: Differential Geometry and Its Applications, Proc. Conf. Brno, 1989, World Scientific, Singapore, 1990, pp. 361–371.Google Scholar
  25. 25.
    Marvan, M.: Another look on recursion operators, in: Differential Geometry and its Applications, Proc. Conf. Brno, 1995, Masaryk University, Brno, 1996, pp. 393–402 (http:// www.emis.de/proceedings/).Google Scholar
  26. 26.
    Mikhailov, A. V.: The reduction problem and the inverse scattering method, Physica D 3(1981), 73–117.Google Scholar
  27. 27.
    Miura, R. M.: Introduction, in: R. M. Miura (ed.), Bäcklund Transformations, Proc. Conf. Nashville, Tennessee 1974, Lecture Notes in Math. 515, Springer, Berlin, 1975.Google Scholar
  28. 28.
    Omote, M.: Prolongation structures of nonlinear equations and infinite-dimensional algebras, J. Math. Phys. 27(1986), 2853–2860.Google Scholar
  29. 29.
    Pirani, F. A. E., Robinson, D. C. and Shadwick, W. F.: Local Jet Bundle Formulation of Bäcklund Transformations, D. Reidel, Dordrecht, 1979.Google Scholar
  30. 30.
    Pommaret, J.-F.: Problème de Bäcklund géneralisé, C.R. Acad. Sci. Paris 289(1979), 119–122.Google Scholar
  31. 31.
    Rogers, C. and Shadwick, W. F.: Bäcklund Transformations and Their Applications, Academic Press, New York, 1982.Google Scholar
  32. 32.
    Saunders, D. J.: The Geometry of Jet Bundles, London Math. Soc. Lecture Notes Ser. 142, Cambridge Univ. Press, Cambridge, 1989.Google Scholar
  33. 33.
    Schief, W. K.: The Tzitzéica equation: Self-dual Einstein spaces via a permutability theorem for the Tzitzéica equation, Phys. Lett. A 223(1996), 55–62.Google Scholar
  34. 34.
    Sokolov, V. V.: Pseudosymmetries and differential substitutions, Funktsional. Anal. i Prilozhen. 22(1988), 47–56 (in Russian).Google Scholar
  35. 35.
    Terng, C. L. and Uhlenbeck, K.: Poisson actions and scattering theory for integrable systems, Preprint dg-ga/9707004.Google Scholar
  36. 36.
    Tzitzéica, G.: Sur une nouvelle classe de surface, C.R. Acad. Sci. Paris 150(1910), 955–956, 1227–1229.Google Scholar
  37. 37.
    Vinogradov, A. M.: Category of partial differential equations, in: Lecture Notes in Math.1108, Springer, Berlin, 1984, pp. 77–102.Google Scholar
  38. 38.
    Wahlquist, H. D. and Estabrook, F. B.: Bäcklund transformation for solutions of the Korteweg–de Vries equation, Phys. Rev. Lett. 31(1973), 1386–1390.Google Scholar
  39. 39.
    Wahlquist, H. D. and Estabrook, F. B.: Prolongation structures and nonlinear evolution equations I, II, J. Math. Phys. 16(1975), 1–7; 17(1976), 1293–1297.Google Scholar
  40. 40.
    Zakharov, V. E. and Shabat, A. B.: Integration of nonlinear equations of mathematical physics by the inverse scattering method. II, Funktsional. Anal. i. Prilozhen. 13(3) (1979), 13–22 (in Russian).Google Scholar
  41. 41.
    Zharinov, V. V.: On Bäcklund correspondences, Matem. Sbornik 136(178) (1988), 274–291 (in Russian). English translation Math. USSR Sbornik 64(1989), 277–293.Google Scholar
  42. 42.
    Zhiber, A. V. and Shabat, A. B.: Klein–Gordon equations with nontrivial group, Dokl. AN SSSR 247(1979), 1103–1107 (in Russian).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • M. Marvan
    • 1
  1. 1.Department of MathematicsSilesian University at OpavaOpavaCzech Republic

Personalised recommendations