Experimental & Applied Acarology

, Volume 22, Issue 2, pp 63–79 | Cite as

REVIEW Evolution and systematics of the Chelicerata

  • Peter Weygoldt


After approximately 40 years of discussion about the question of whether the Arthropoda are a monophyletic or a paraphyletic group or even a polyphyletic assemblage of unrelated taxa, most morphologists, palaeontologists and molecular taxonomists agree that the Arthropoda are a monophylum. The Euarthropoda are composed of the Arachnomorpha and Mandibulata. Myriapods are usually considered to be mandibulates; however, new molecular data as well as some morphological characters show similarities which the Myriapoda share with the Chelicerata, suggesting that there is no taxon Antennata or Atelocerata. Chelicerata are usually considered to be the sister group of Trilobita or, more correctly, Trilobita branch off from the chelicerate stem line. The first adaptive radiation of the Chelicerata took place in the Cambrian. All extant and some extinct orders were present during the Carboniferous. Two systems are compared. It is suggested that the Chelicerata contain the Pantopoda and Euchelicerata. The Euchelicerata are divided into Xiphosura and terrestrial Arachnida. Scorpiones are considered to be the sister group of all other arachnids, the Lipoctena and these are further divided into the Megoperculata (Uropygi, Amblypygi, and Araneae) and Apulmonata (all other groups). The Acari are tentatively considered to be a monophylum and the sister group of the Ricinulei. However, the Actinotrichida and Anactinotrichida diverged early and therefore have had a long history of independent evolution.

Arthropod interrelationships phylogenetic system of Chelicerata Arthropoda Scorpiones 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberti, G. 1979. Zur Feinstruktur der Spermien und Spermiocytogenese von Prokoenenia wheeleri(Rucker, 1901) (Palpigradi, Arachnida). Zoomorphologie 94: 111–120.Google Scholar
  2. Alberti, G. 1980a. Zur Feinstruktur des Hodenepithels und der Spermien von Eusimonia mirabilisRoewer, 1934 (Solifugae, Arachnida). Zool. Anz. 204: 345–352.Google Scholar
  3. Alberti, G. 1980b. Zur Feinstruktur der Spermien und Spermiocytogenese der der Milben (Acari): I. Anactinotrichida. Zool. Jb. Anat. 104: 77–138.Google Scholar
  4. Alberti, G. 1980c. Zur Feinstruktur der Spermien und Spermiocytogenese der Milben (Acari): II. Actinotrichida. Zool. Jb. Anat. 104: 144–203.Google Scholar
  5. Alberti, G. 1983. Fine structure of scorpion spermatozoa (Buthus occitanus: Buthidae, Scorpiones). J. Morphol. 177: 205–212.Google Scholar
  6. Alberti, G. 1984. The contribution of comparative spermatology to problems of acarine systematics. In Acarology VI. I. Sixth International Congress of Acarology, D.A. Griffiths and C.E. Bowman (eds), pp. 479–490. Ellis Horwood, Chichester.Google Scholar
  7. Alberti, G. 1991. Spermatology in the Acari: systematic and functional implications. In The Acari - reproduction, development and life-history strategies, R. Schuster and P.W. Murphy. (eds), pp. 77–105. Chapman & Hall, London.Google Scholar
  8. Alberti, G. 1995. Comparative spermatology of Chelicerata: review and perspective. In Advances in spermatozoal phylogeny and taxonomy, B.G.M. Jamieson, J. Ausio and J.-L. Justine (eds), vol. 166 pp. 203–230. Mém. Mus. Hist. Nat., Paris.Google Scholar
  9. Anderson, D.T. 1972. The development of hemimetabolous insects. pp. In Developmental systems - insects, J. Counce and C.H. Waddington (eds), pp. 95–163. Academic Press, London.Google Scholar
  10. Anderson, D.T. 1973. Embryology and Phylogeny in Annelids and Arthropods. Pergamon Press, Oxford.Google Scholar
  11. Anderson, D.T. 1979. Embryos, fate maps, and the phylogeny of arthropods. In Arthropod phylogeny, A.P. Gupta (ed.), pp. 59–105. Van Nostrand Reinhold, New York.Google Scholar
  12. Ankel, W.E. 1958. Begegnung mit Limulus. Natur Volk 88: 101–110.Google Scholar
  13. Averof, M. and Akam, M. 1995. Insect-Crustacean relationships: insights from comparative developmental and molecular studies. Phil. Trans. R. Soc. Lond. B347: 293–303.Google Scholar
  14. Ax, P. 1984. Das Phylogenetische System. Gustav Fischer, Stuttgart.Google Scholar
  15. Bergström, J. 1979. Morphology of fossil arthropods as a guide to phylogenetic relationships. In Arthropod phylogeny, A.P. Gupta (ed.), pp. 3–56. Van Nostrand Reinhold, New York.Google Scholar
  16. Bergström, J. 1980. Morphology and systematics of early arthropods. Abh. Naturwiss. Ver. Hamburg (NF) 23: 1–42.Google Scholar
  17. Boore, J.F., Collins, T.M., Stanton, D., Daehler, L.L. and Brown, W.M. 1995. Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature 376: 163–165.Google Scholar
  18. Boudreaux, H.B. 1979a. Significance of intersegmental tendon system in arthropod phylogeny and monophyletic classification of Arthropoda. In Arthropod phylogeny, A.P. Gupta (ed.), pp. 551–586. Van Nostrand Reinhold, New York.Google Scholar
  19. Boudreaux, H.B. 1979b. Arthropod Phylogeny. With Special Reference to Insects. John Wiley & Sons, New York.Google Scholar
  20. Briggs, D.E.G. 1987. Scorpions take to the water. Nature 326: 645–646.Google Scholar
  21. Briggs, D.E.G. and Fortey, R.A. 1989. The early radiation and relationships of the major arthropod groups. Science 246: 241–243.Google Scholar
  22. Briggs, D.E.G., Fortey, R.A. and Wills, M.A. 1992. Morphological disparity in the Cambrian. Science 256: 1670–1673.Google Scholar
  23. Dohle, W. 1980. Sind die Myriapoden eine monophyletische Gruppe? Abh. Naturwiss. Ver. Hamburg (NF) 23: 45–104.Google Scholar
  24. Dohle, W. 1996. Myriapod-Insect relationships as opposed to a crustacean-insect sister group relationship (abstract). In International Symposium on the Relationships of Major Arthropod Groups. pp. 8–9. The Natural History Museum, London.Google Scholar
  25. Emerson, J. and Schram, F.R. 1990. The origin of biramous appendages and the evolution of Arthropoda. Science 250: 667–669.Google Scholar
  26. Evans, G.O. 1992. Principles of Acarology. CAB International, Wallingford, UK.Google Scholar
  27. Firstman, B. 1973. The relationship of the chelicerate arterial system to the evolution of the endosternite. J. Arachnol. 1: 1–54.Google Scholar
  28. Fortey, R.A. and Whittington, H.B. 1989. The Trilobita as a natural group. Historical Biol. 2: 125–138.Google Scholar
  29. Friedrich, M. and Tautz, D. 1995. Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods. Nature 376: 165–167.Google Scholar
  30. Fryer, G. 1996. Reflections on arthropod evolution. Biol. J. Linn. Soc. 58: 1–55.Google Scholar
  31. Gould, S.J. 1989. Wonderful Life. The Burgess Shale and the Nature of History. Norton, New York.Google Scholar
  32. Grashoff, M. 1978. A model of the evolution of the main chelicerate groups. Symp. Zool. Soc. Lond. 42: 273–284.Google Scholar
  33. Hahn, G. 1989. Reconstruction of the phylogenetic relationships among the higher systematic taxa of trilobites. Abh. Naturwiss. Ver. Hamburg (NF) 28: 187–199.Google Scholar
  34. Hennig, W. 1950. Grundzüge einer Theorie der Phylogenetische Systematik. Deutscher Zentralverlag, Berlin.Google Scholar
  35. Hennig, W. 1966. Phylogenetic Systematics. University of Illinois Press, Urbana, Chicago.Google Scholar
  36. Kjellesvig-Waering, E.N. 1986. A restudy of the fossil Scorpionida of the world. Paleont. Am. 55: 1–287.Google Scholar
  37. Kraus, O. 1996. Phylogenetic relationships between higher taxa of tracheate arthropods (abstract). In International Symposium on the Relationships of Major Arthropod Groups. pp.11–12. The Natural History Museum, London.Google Scholar
  38. Kraus, O. and Kraus, M. 1994. Phylogenetic system of the Tracheata (Mandibulata): on ‘Myriapoda’-Insecta interrelationships, phylogenetic age and primary ecological niches. Verh. Naturwiss. Ver. Hamburg (NF) 34: 5–31.Google Scholar
  39. Kukalova-Peck, J. 1992. The Uniramia do not exist: the groundplan in the Pterygota as revealed by Permian Diaphanopterodea from Russia (Insecta, Palaeodictyopteroidea). Can. J. Zool. 70: 236–255.Google Scholar
  40. Lauterbach, K.-E. 1973. Schlüsselereignisse in der Evolution der Stammgruppe der Euarthropoda. Zool. Beitr. Berlin (NF) 19: 251–299.Google Scholar
  41. Lauterbach, K.-E. 1980a. Schlüsselereignisse in der Evolution des Grundplans der Mandibulata (Arthropoda). Abh. Naturwiss. Ver. Hamburg (NF) 23: 105–161.Google Scholar
  42. Lauterbach, K.-E. 1980b. Schlüsselereigniss in der Evolution des Grundplans der Arachnata (Arthropoda). Abh. Naturwiss. Ver. Hamburg (NF) 23: 163–327.Google Scholar
  43. Lauterbach, K.-E. 1983. Synapomorphien zwischen Trilobiten-und Cheliceratenzweig der Arachnata. Zool. Anz. Jena 210: 213–238.Google Scholar
  44. Lauterbach, K.-E. 1989. Trilobites and phylogenetic systematics: a reply to G. Hahn. Abh. Naturwiss. Ver. Hamburg (NF) 28: 201–211.Google Scholar
  45. Lindquist, E. E. 1984. Current theories on the evolution of major groups of Acari and on their relationships with other groups of Arachnida, with consequent implications for their classification. In Acarology VI, I, D.A. Griffiths and C.E. Bowman (eds), pp. 28–62. Ellis Horwood, Chichester.Google Scholar
  46. Manton, S.M. 1973. Arthropod phylogeny - a modern synthesis. J. Zool. Lond. 171: 111–130.Google Scholar
  47. Manton, S.M. 1977. The Arthropoda: Habits, Functional Morphology, and Evolution. Clarendon Press, Oxford.Google Scholar
  48. Manton, S.M. 1979. Functional morphology and the evolution of the hexapod classes. In Arthropod phylogeny, A.P. Gupta (ed.), pp. 387–465. Van Nostrand Reinhold, New York.Google Scholar
  49. Manton, S.M. and Anderson, D.T. 1979. Polyphyly and the evolution of Arthropods. In The origin of major invertebrate groups, M.R. House (ed.), pp. 269–321. Academic Press, London, New York.Google Scholar
  50. Paulus, H.F. 1979. Eye structure and the monophyly of the Arthropoda. In Arthropod phylogeny, A.P. Gupta (ed.), pp. 299–383. Van Nostrand Reinhold, New York.Google Scholar
  51. Petrunkevitch, A. 1955. Arachnida. In Treatise on invertebrate paleontology, part P, Arthropoda 2, R.C. Moore (ed.), pp. 42–162. University of Kansas Press, Lawrence.Google Scholar
  52. Ramsköld, L. and Edgecombe, G.D. 1991. Trilobite monophyly revisited. Historical Biol 4: 267–283.Google Scholar
  53. Scholl, G. 1977. Beiträge zur Embryonalentwicklung von Limulus polyphemusL. (Chelicerata, Xiphosura). Zoomorphologie 86: 99–154.Google Scholar
  54. Schram, F.R. 1978. Arthropods: a convergent phenomenon. Fieldiana Geol. 39: 61–108.Google Scholar
  55. Schram, F.R. 1986. Crustacea. Oxford University Press, New York, Oxford.Google Scholar
  56. Selden, P.A., Shear, W.A. and Bonamo, P.M. 1991. A spider and other arachnids from the Devonian of New York, and reinterpretations of Devonian Araneae. Palaeonotology 34: 241–281.Google Scholar
  57. Shear, W.A. 1992. End of the Uniramia taxon. Nature 355: 477–478.Google Scholar
  58. Shear, W.A. and Kukalova-Peck, J. 1990. The ecology of palaeozoic terrestrial arthropods: the fossil evidence. Can. J. Zool. 68: 1807–1834.Google Scholar
  59. Shultz, J.W. 1989. Morphology of locomotor appendages in Arachnida: evolutionary trends and phylogenetic implications. Zool. J. Linn. Soc. 97: 1–56.Google Scholar
  60. Shultz, J.W. 1990. Evolutionary morphology and phylogeny of Arachnida. Cladistics 6: 1–38.Google Scholar
  61. Smith, E.L. 1990. An arthropod morphologist looks at six hundred million years of chelicerate evolution. Newsl. Am. Arachnol. Soc. 42: 3–5.Google Scholar
  62. Snodgrass, R.E. 1938. Evolution of Annelida, Onychophora and Arthropoda. Smithson. Misc. Coll. 138: 1–77.Google Scholar
  63. Störmer, L. 1955a. Chelicerata. In Treatise on invertebrate paleontology, part P, Arthropoda 2, R.C. Moore (ed.), p. 1–3. University of Kansas Press, Lawrence.Google Scholar
  64. Störmer, L. 1955b. Merostomata. In Treatise on invertebrate paleontology, part P, Arthropoda 2, R.C. Moore (ed.), p. 4–41. University of Kansas Press, Lawrence.Google Scholar
  65. Telford, M.J. and Thomas, R.H. 1995. Demise of the Atelocerata? Nature 376: 123–124.Google Scholar
  66. Tiegs, O.W. and Manton, S.M. 1958. The evolution of the Arthropoda. Biol. Rev. Cambridge 33: 255–337.Google Scholar
  67. Turbeville, J.M., Pfeifer, D.M., Field, K.G. and Raff, R.A. 1991. The phylogenetic status of arthropods, as inferred from 18S rRNA sequences. Mol. Biol. Evol. 8: 669–686.Google Scholar
  68. Van der Hammen, L. 1972. A revised classification of the mites (Arachnidea, Acarida) with diagnosis, a key, and notes on phylogeny. Zool. Mededel. Leiden 47: 273–292.Google Scholar
  69. Van der Hammen, L. 1977. A new classification of chelicerata. Zool. Mededel. Leiden 51: 307–319.Google Scholar
  70. Van der Hammen, L. 1978. The evolution of the chelicerate life-cycle. Acta Biotheor. 27: 44–60.Google Scholar
  71. Van der Hammen, L. 1982. Comparative studies in Chelicerat II. Epimerata (Palpigradi and Actinotrichida). Zool. Verh. Leiden 196: 3–70.Google Scholar
  72. Van der Hammen, L. 1985. Functional morphology and affinities of extant Chelicerata in evolutionary perspective. Trans. R. Soc. Edinburgh 76: 137–146.Google Scholar
  73. Van der Hammen, L. 1986a. Acarological and arachnological notes. Zool. Mededel. Leiden 60(14): 217–230.Google Scholar
  74. Van der Hammen, L. 1986b. Comparative studies in Chelicerata IV. Apatellata, Arachnida, Scorpionida, Xiphosura. Zool. Verh. Leiden 236: 3–52.Google Scholar
  75. Van der Hammen, L. 1986c. On some aspects of parallel evolution in Chelicerata. Acta Biotheor. 35: 15–37.Google Scholar
  76. Wägele, J.W. 1993. Rejection of the Uniramia hypothesis and implications of the mandibulata concept. Zool. Jb. Systematik 120: 253–288.Google Scholar
  77. Wägele, J.W. 1994. Review of methodological problems of ‘computer cladistics’ exemplified with a case study on isopod phylogeny (Crustacea: Isopoda). Z. Zool. Syst. Evolut.-forsch. 32: 81–107.Google Scholar
  78. Waggoner, B.M. 1996. Phylogenetic hypotheses of the relationships of arthropods to Precambrian and Cambrian problematical taxa. System. Biol. 45: 190–222.Google Scholar
  79. Weygoldt, P. 1979. Significance of later embryonic stages and head development in arthropod phylogeny. In Arthropod phylogeny, A.P. Gupta (ed.), pp. 107–135. Van Nostrand Reinhold, New York.Google Scholar
  80. Weygoldt, P. 1986. Arthropod interrelationships - the phylogenetic-systematic approach. Z. Zool. Systematik Evolut.-forsch. 24: 19–35.Google Scholar
  81. Weygoldt, P. and Paulus, H.F. 1979a. Untersuchungen zur Morphologie, Taxonomie und Phylogenie der Chelicerata. I. Morphologische Untersuchungen. Z. Zool. Systematik Evolut.-forsch. 17: 85–116.Google Scholar
  82. Weygoldt, P. and Paulus, H.F. 1979b. Untersuchungen zur Morphologie, Taxonomie und Phylogenie der Chelicerata. II. Cladogramme und die Entflatung der Chelicerata. Z. Zool. Systematik Evolut.-forsch. 17: 177–200.Google Scholar
  83. Wheeler, Q.D., Cartwright, P. and Hayashi, C.Y. 1993. Arthropod phylogeny. A combined approach. Cladistics 9: 1–39.Google Scholar
  84. Whittington, H. B. 1989. Olenelloid trilobites: type species, functional morphology and higher classification. Phil Trans. R. Soc. Lond. B324: 111–147.Google Scholar
  85. Wills, M.A., Briggs, D.E.G. and Fortey, R.A. 1994. Disparity as an evolutionary index: a comparison of Cambrian and recent arthropods. Palaeobiology 20: 93–130.Google Scholar
  86. Wills, M.A., Briggs, D.E.G., Fortey, R. and Wilkinson, M. 1995. The significance of fossils in understanding arthropod evolution. Verh. Dtsch. Zool. Ges. 88: 203–215.Google Scholar
  87. Winter, G. 1980. Beiträge zur Morphologie und Embryologie des vorderen Körperabschnittes (Cephalosoma) der Pantopoda Gerstaecker 1863. I. Entstehung und Struktur des Zentralnervensystems. Z. Zool. Syst. Evolut.-forsch. 18: 27–61.Google Scholar
  88. Zachvatkin, A. A. 1952. Acarina und ein Vorschlag für ein System der Chelicerata. Parasitol. Sbornik Inst. Zool. Akad. Nauk SSSR 14: 5–46.Google Scholar

Copyright information

© Chapman and Hall 1998

Authors and Affiliations

  • Peter Weygoldt

There are no affiliations available

Personalised recommendations