Experimental & Applied Acarology

, Volume 22, Issue 1, pp 39–50 | Cite as

Feeding behaviour and phylogeny: observations on early derivative Acari

  • David Evans Walter
  • Heather C. Proctor


Based on laboratory observations of three species of Allothyrus (Parasitiformes: Holothyrida: Allothyridae) from south east Queensland and gut content analysis of 62 individuals representing 11 species of Allothyrus from eastern Australia, we determined that Australian Allothyridae are scavengers that ingest fluids only. Living arthropods, nematodes, snails and annelids were ignored, but dead arthropods were readily fed upon and were sufficient to maintain adults and nymphs for many months. The adults were sluggish, timid animals that relied on armour, thanatosis and probably on noxious chemicals for protection: the juveniles produced secretions from idiosomal glands. In contrast, most early derivative Mesostigmata that we tested (Sejina, species of Sejus and Uropodella; Uropodina, Polyaspis sp. and Cercomegistina, an undescribed Asternoseiidae) were aggressive predators of small invertebrates and ingested fluids only; however, two species of Asternolaelaps (Sejina) had solid fungal and animal material in their guts. Similarly, the early derivative acariform (Palaeosomata, species of Stomacarus and Loftacarus) and opilioacariform mites (an undescribed Opilioacarida from Australia) that we examined all ingested particulate foods, including fungal and animal material. These observations are consistent with the hypothesis that the earliest mites were scavengers and opportunistic predators that ingested solid foods and that fluid feeding is a derived condition linking the three orders of Parasitiformes (Holothyrida, Ixodida and Mesostigmata).

Phylogeny behaviour feeding Holothyrida Opilioacarida Parasitiformes. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberti, G. 1995. Comparative spermatology of the Chelicerata: review and perspective. Mem. Mus. Nat. Hist. Nat. 166: 203–230.Google Scholar
  2. Arnaud, F. and Bamber, R.N. 1987. The biology of Pycnogonida. Adv. Mar. Biol. 24: 1–263.Google Scholar
  3. Athias-Henriot, C. 1972. Gamasides Chiliens (Arachnides) II. Revision de la famille Ichthyostomatogasteridae Sellnick 1953 (= Uropodellidae Camin, 1955). Arquivos de Zoologia Sao Paulo 22: 113–191.Google Scholar
  4. Beron, P.K. 1990. On the occurrence of Opiloacarus segmentatusWith, 1903 (Arachnida, Opiloacarida) on the islands of Kassos, Karpathos and Rhodes (Greece). Acta Zool. Bulgarica 39: 64–66.Google Scholar
  5. Camin, J.H. 1954 Polyaspis berlesi, a new species of trachytoid mite (Mesosostigmata: Polyaspidae). Bull. Chi. Acad. Sci. 10: 25–33.Google Scholar
  6. Coineau, Y. and van der Hammen, L. 1979. The postembryonic development of Opilioacarida, with notes on new taxa and on a general model for the evolution. In Proceedings of the Fourth International Congress of Acaralogy, E. Piffl (ed.), pp. 437–441. Akadémiai Kiadó, Budapest.Google Scholar
  7. Domrow, R. 1955. A second species of Holothyrus(Acarina: Holothyroidea) from Australia. Proc. Lin. Soc. NSW 74: 159–162.Google Scholar
  8. Dunlop, J.A. 1997. Palaeozoic arachnids and their significance for arachnid phylogeny. In Proceedings of the 16th European Colloquium on Arachnology, pp. 65–82.Google Scholar
  9. Evans, G.O. 1992. Principles of Acarology, CAB International, Cambridge.Google Scholar
  10. Hutu, M. 1991. Reproduction, embryonic and postembryonic deleveopment of Trichouropodis obscurasimilis Google Scholar
  11. Hirschmann & Zirngiebl-Nichol 1961 (Anactinotrichida: Uropodina). In The Acari. Reproduction, development and life-history strategies, R. Schuster and P.W. Murphy (eds), pp. 287–299. Chapman & Hall, London.Google Scholar
  12. Johnston, D.E. 1982. Acari. In Synopsis and classification of living organisms, S.P. Parker (ed.), p. 111. McGraw-Hill, New York.Google Scholar
  13. Kaiser, T. and Alberti, G. 1991. The fine structures of the lateral eyes of Neoacarus texanusChamberlin and Muliak, 1942 (Opilioacarida, Acari, Arachnida, Chelicerata). Protoplasma 163: 19–33.Google Scholar
  14. Krantz, G.W. 1978. A Manual of Acarology, 2nd edn. Oregon State University Bookstores, Corvallis.Google Scholar
  15. Lee, D.C. and Southcott, R.V. 1979. Spiders and other arachnids of South Australia. In South Australian Yearbook, D.J. Woolman, (ed.), Government Printer, South Australia.Google Scholar
  16. Lehtinen, P.T. 1981. New Holothyrina (Arachnida, Anactinotrichida) from New Guinea and South America. Acaralogia 22: 3–13.Google Scholar
  17. Lehtinen, P.T. 1991. Phylogeny and zoogeography of the Holothyrida. In Modern acaralogy, Vol. 2, F. Dusabek and V. Bukva (eds), pp. 101–113. SPB Academic Publishers, The Hague.Google Scholar
  18. Lehtinen, P.T. 1995. Revision of the Old World Holothyridae (Arachnida: Anactinotrichida: Holothyrina). Invert. Taxon. 9: 767–826.Google Scholar
  19. Lindquist, E.E. 1984. Current theories on the evolution of major groups of Acari and on their relationships with other groups of Arachnida, with consequent implications for their classification. In Acaralogy VI, Vol. 1, D.A. Griffiths and C.E. Bowman (eds), pp. 28–62. John Wiley & Sons, New York.Google Scholar
  20. OConnor, B.M. 1984. Acarine-Fungal relationships: the evolution of symbiotic associations. In Fungus-Insect relationships, perspectives in ecology and evolution, Q. Wheeler and M. Blackwell (eds), pp. 354–381. Columbia University Press, New York.Google Scholar
  21. Phillipson, J. 1960. A contribution to the feeding biology of Mitopus morio(F) (Phalangida). J. Animal Ecol. 29: 35–43.Google Scholar
  22. Proctor, H.C. 1993. Mating biology resolves trichotomy for cheliferoid pseudoscorpions (Pseudoscorpionida, Cheliferoidea). J. Arachnol, 21: 156–158.Google Scholar
  23. Proctor, H.C. 1998. Indirect sperm transfer in arthropods. Annu. Rev. Entomol. 43: in press.Google Scholar
  24. Ruppert, E.E. and Barnes, R.D. 1994. Invertebrate Zoology, 6th edn. Saunders College Publishing, Toronto.Google Scholar
  25. Seeman, O.D. 1996. Flower mites and phoresy: the biology of Hattena panoplaDomrow and Hattena cometisDomrow. Austr. J. Zool. 44: 193–203.Google Scholar
  26. Seeman, O.D. and Walter, D.E. 1995. Life history of Afrocypholaelaps africana(Evans) (Parasitiformes: Ameroseiidae), a mite inhibiting mangrove flowers and phoretic on honeybees. J. Austr. Entomol. Soc. 34: 45–50.Google Scholar
  27. Selden, P.A. and Jeram, A.J. 1989. Paleophysiology of terrestrialisation in the Chelicerata. Trans. R. Soc. Edinburgh, Earth Sci. 80: 303–310.Google Scholar
  28. Southcott, R.V. 1976. Arachnidism and allied syndromes in the Australian region. Records Adelaide Children's Hospital 1: 97–186.Google Scholar
  29. Travé, J. 1982. Premières observations sur le comportement de Thonius braueri(Thon, 1906) (Holothyrida). Acaralogia 23: 199–206.Google Scholar
  30. van der Hammen, L. 1989. An Introduction to Comparative Arachnology. SPB Academic Publishing, The Hague.Google Scholar
  31. Walter, D.E. 1987. Trophic behavior of ‘mycophagous’ microarthropods. Ecology 68: 226–229.Google Scholar
  32. Walter, D.E. 1988. Predation and mycophagy by endeostigmatid mites (Acariformes: Prostigmata). Exp. Appl. Acarol. 4: 159–166.Google Scholar
  33. Walter, D.E. and Lindquist, E.E. 1989. Life history and behavior of ascid mites in the genus Lasioseius(Acari: Mesostigmata) from grassland soils in Colorado with taxonomic notes and a description of new species. Can. J. Zool. 67: 2797–2813.Google Scholar
  34. Wernz, J.G. and Krantz, G.W. 1976. Studies on the function of the tritosternum in selected Gamasida (Acari). Can. J. Zool. 54: 202–213.Google Scholar
  35. Woodring, J.P. and Galbraith, C.A. 1976. The anatomy of the adult uropodid Fuscouropoda agitans(Arachnida: Acari), with comparative observations on the other Acari. J. Morphol. 150: 19–58.Google Scholar

Copyright information

© Chapman and Hall 1998

Authors and Affiliations

  • David Evans Walter
  • Heather C. Proctor

There are no affiliations available

Personalised recommendations