Plant Cell, Tissue and Organ Culture

, Volume 53, Issue 3, pp 179–187 | Cite as

Effect of dimethyl-β-cyclodextrins on resveratrol metabolism in Gamay grapevine cell cultures before and after inoculation with shape Xylophilus ampelinus

  • M. Morales
  • R. Bru
  • F. García-Carmona
  • A. Ros Barceló
  • M.A. Pedreño
Article

Abstract

Gamay cell cultures were treated with dimethyl-β-cyclodextrins in order to ascertain their effect on resveratrol metabolism before and after inoculation with Xylophilus ampelinus. The results showed that, in grapevine cell suspensions, dimethyl-β-cyclodextrins themselves do not need the co-cultivation with bacteria to act as elicitors of the cells producing trans-resveratrol, a phytoalexin of grapevines. Dimethyl-β-cyclodextrins protected cell suspensions against bacteria by maintaining a high level of peroxidase activity.

dimethyl-β-cyclodextrin hydroxystilbene peroxidase trans-piceid suspension culture Vitis vinifera L. Xylophilus ampelius 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bar R & Ulitzur S (1994) Bacterial toxicity of cyclodextrins: luminuous Escherichia coli as a model. Appl. Microbiol. Biotechnol. 41: 574–577PubMedCrossRefGoogle Scholar
  2. Bru R, López-Nicolás JM & García-Carmona F (1995) Aggregation of polyunsaturated fatty acids in the presence of cyclodextrins. Colloid Surf. A 97: 263–269CrossRefGoogle Scholar
  3. Bru R, López-Nicolás JM, Sánchez-Ferrer A & García-Carmona F (1996a) Cyclodextrins as molecular tools to investigate the surface properties of potato 5-lipoxygenase. Prog. Colloid Polym. Sci 100: 276–280CrossRefGoogle Scholar
  4. Bru R, López-Nicolás JM, Nuñez-Delicado E, Nortes-Ruipérez D, Sánchez-Ferrer A & García-Carmona F (1996b) Cyclodextrins hosts for poorly water-soluble compounds in enzyme catalysis. Appl. Biochem. Biotechnol. 61: 189–198Google Scholar
  5. Calderón AA, García-Florenciano E, Pedreño MA, Muñoz R & Ros Barceló A (1992) The vacuolar localization of grapevine peroxidase isoenzymes capable of oxidizing 4-hydroxystilbenes. Z. Naturforsch. 47c: 215–221Google Scholar
  6. Calderón AA, Zapata JM & Ros Barceló A (1994) Peroxidase-mediated formation of resveratrol oxidation products during the hypersensitive-like reaction of grapevine cells to an elicitor from Tricoderma viride. Physiol. Mol. Plant Pathol. 44: 289–299CrossRefGoogle Scholar
  7. Daub ME (1986) Tissue culture and the selection of resistance to pathogens. Annu. Rev. Phytopatol. 24: 159–186CrossRefGoogle Scholar
  8. Duchêne D & Wouessidjewe D (1990a) Physicochemical characteristics and pharmaceutical uses of cyclodextrin derivatives, Part I. Pharm. Technol. 14: 26–34Google Scholar
  9. Duchêne D & Wouessidjewe D (1990b) Physicochemical characteristics and pharmaceutical uses of cyclodextrin derivatives, Part II. Pharm. Technol. 14: 22–30Google Scholar
  10. Ferrer MA, Calderón AA, Muñoz, R & Ros Barceló A (1990) 4-Methoxy-α-naphtol as a specific substrate for kinetic, zymographic and cytochemical studies on plant peroxidase activities. Phytochem. Anal. 1: 63–69Google Scholar
  11. García-Florenciano E, Calderón AA, Pedreño MA, Muñoz R & Ros Barceló A (1991) The vacuolar localization of basic isoperoxidases in grapevine suspension cell cultures and its significance in indole-3-acetic acid catabolism. Plant Growth Regul. 10: 125–138CrossRefGoogle Scholar
  12. Higuchi T & Connors K (1965) Phase-solubility techniques. Adv. Anal. Chem. Instrum. 4: 117–212Google Scholar
  13. Hoos G & Blaich R (1988) Metabolism of stilbene phytoalexins in grapevines: oxidation of resveratrol in single-cell cultures. Vitis 27: 1–12Google Scholar
  14. Jadoun J & Bar R (1993) Microbial transformation in a cyclodextrin medium. Part 3. Cholesterol oxidation by Rhodococcus erythropolis. Appl. Microbiol. Biotechnol. 40: 230–240Google Scholar
  15. Lamuela-Raventós RM, Romero-Pérez AI, Waterhouse AL & de la Torre-Boronat MC (1995) Direct HPLC analysis of cis-and resveratrol and piceid isomers in spanish red Vitis vinifera wines. J. Agric. Food Chem. 43: 281–283CrossRefGoogle Scholar
  16. Langcake P & Pryce RJ (1977) A new class of phytoalexins from grapevines. Experientia 33: 151–152PubMedCrossRefGoogle Scholar
  17. Lange BM, Trost M, Heller W, Langebartels C & Sandermann H (1994) Elicitor-induced formation of free and cell-wall-bound stilbenes in cell-suspension cultures of Scots pine (Pinus sylvestris L.). Planta 194: 143–148CrossRefGoogle Scholar
  18. Liswidowati, Hohmann F, Schwer B & Kindl H (1991) Induction of stilbene synthase by Botrytis cinerea in cultured grapevine cells. Planta 183: 307–314Google Scholar
  19. López-Nicolás JM, Bru R, Sánchez-Ferrer A & García-Carmona F (1995) Use of soluble lipids for biochemical processes: linoleic acid-cyclodextrin inclusion complexes in aqueous solutions. Biochem. J. 308: 151–154PubMedGoogle Scholar
  20. López-Nicolás JM, Bru R & García-Carmona F (1997) Enzymatic oxidation of linoleic acid by lipoxygenase forming inclusion complexes with cyclodextrins as starch model molecules. J. Agric. Food Chem. (in press)Google Scholar
  21. Melchior F & Kindl H (1991) Coordinate-and elicitor-dependent expression of stilbene synthase and phenylalanine ammonialyase genes in Vitis cv. optima. Arch. Biochem. Biophys. 288: 552–557PubMedCrossRefGoogle Scholar
  22. Mikami B, Hehre EJ, Sato N, Katsube Y, Hirose M, Morita Y & Sacchettini JC (1993) The 2.0-A resolution structure of soybean β-amylase complexed with β-cyclodextrin. Biochemistry 32: 6836–6845PubMedCrossRefGoogle Scholar
  23. Panagopoulos CG (1969) The disease “Tsilik marasi” of grapevine: its description and identification of the causal agent (Xanthomonas ampelina sp. Nov.). Ann. Inst. Phytopatol. Benaki, N.S. 9: 59–81Google Scholar
  24. Rolfs CH, Schön H, Steffens M & Kindl H (1987) Cell suspension culture of Arachis hypogaea L.: model system of specific enzyme induction in secondary metabolism. Planta 172: 238–244CrossRefGoogle Scholar
  25. Schröder J & Schröder G (1990) Stilbene and chalcone synthases: related enzymes with key functions in plant-specific pathways. Z. Naturforsch. 45c: 1–8Google Scholar
  26. Schultz TP, Cheng Q, Boldin WD, Hubbard TF, Jin JL, Fisher TH & Nicholas DD (1991) Comparison of the fungicidal activities of (E)-4-hydroxylated stilbenes and related bibenzyls. Phytochemistry 30: 2939–2945CrossRefGoogle Scholar
  27. Siemann EH & Creasy LL (1992) Concentration of the phytoalexin resveratrol in wine. Am. J. Enol. Vitic. 43: 49–52Google Scholar
  28. Szejtli J (1982) Chemistry and preparation of cyclodextrins. In: Szejtli J (Ed) Cyclodextrins and their inclusion complexes, (pp. 17–40). Akadémiai Kiadò, BudapestGoogle Scholar
  29. Tropf S, Lanz T, Rensing SA, Schröder J & Schröder G (1994) Evidence that stilbene synthases have developed from chalcone synthases several times in the course of evolution. J. Mol. Evol. 38: 610–618PubMedCrossRefGoogle Scholar
  30. Van Uden W, Bouma AS, Waker JFB, Middel O, Wichas HJ, De Waard P, Woerdenbag HJ, Kellogg RM & Pras M (1995) The production of podophyllotoxin and its 5-methoxy derivate through bioconversion of cyclodextrin-complexed desoxypodophyllotoxin by plant cell cultures. Plant Cell Tiss. Org. Cult. 42: 73–79CrossRefGoogle Scholar
  31. Waffo TP, Decendit A, Vercauteren J, Deffieux G & Mérillon JM (1996) Trans-resveratrol-3-O-β-glucoside (piceid) in cell suspension cultures of Vitis vinifera. Phytochemistry 42: 1591–1593CrossRefGoogle Scholar
  32. Waterhouse AL & Lamuela-Raventós RN (1994) The occurrence of piceid, a stilbene glucoside, in grape berries. Phytochemistry 37: 571–573CrossRefGoogle Scholar
  33. Wiese W, Vornam B, Krause E & Kindl H (1994) Structural organization and differential expression of three stilbene synthase genes located on a 13 kb grapevine DNA fragment. Plant Mol. Biol. 26: 667–677PubMedCrossRefGoogle Scholar
  34. Willems A, Gillis M, Kersters K, Van Den Broecke L & De Ley J (1987) Transfer of Xanthomonas ampelina to a new gen. Nov. as Xylophilus ampelinus. Intern. J. Syst. Bacteriol. 37: 422–430CrossRefGoogle Scholar
  35. Woerdenbag HJ, Pras N, Frijlink HW, Lerk CF & Malingré ThM (1990a) Cyclodextrin-facilitated bioconversion of 17β-estradiol by a phenoloxidase from Mucuna pruriens cell cultures. Phytochemistry 29: 1551–1554PubMedCrossRefGoogle Scholar
  36. Woerdenbag HJ, Van Uden W, Frijlink HW, Lerk CF, Pras N & Malingré ThM (1990b) Increased podophyllotoxin production in Podophyllum hexandrum cell suspension cultures after feeding coniferyl alcohol as a β-cyclodextrin complex. Plant Cell Rep. 9: 97–100CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • M. Morales
    • 1
  • R. Bru
    • 2
  • F. García-Carmona
    • 2
  • A. Ros Barceló
    • 1
  • M.A. Pedreño
    • 2
  1. 1.Department of Plant Biology (Plant Physiology)USA
  2. 2.Department of Biochemistry and Molecular Biology A, Faculty of BiologyUniversity of Murcia. Campus Universitario de EspinardoMurciaSpain

Personalised recommendations