Breast Cancer Research and Treatment

, Volume 47, Issue 3, pp 269–281

The mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R), a putative breast tumor suppressor gene

  • Adam J. Oates
  • Lisa M. Schumaker
  • Sara B. Jenkins
  • Amelia A. Pearce
  • Stacey A. DaCosta
  • Banu Arun
  • Matthew J.C. Ellis
Article

Abstract

Loss of heterozygosity (LOH) at the mannose 6-phosphate/insulin-like growth factor 2 receptor gene locus (M6P/IGF2R) on 6q26-27 has recently been demonstrated in approximately 30% of both invasive and in situ breast cancers. LOH was coupled with somatic point mutations in the remaining allele in several instances, leading to the proposition that M6P/IGF2R is a tumor suppressor gene [1]. Somatic mutations in M6P/IGF2R have also been described in hepatoma [2] and gastrointestinal cancers with the replication error positive (RER+) phenotype [3]. These data indicate that M6P/IGF2R loss of function mutations may be involved in the pathogenesis of a wide spectrum of malignancies. Extensive data on the normal function of the M6P/IGF2R suggest that loss of M6P/IGF2R activity may contribute to multiple aspects of tumor pathophysiology, including deregulated growth, apoptosis, angiogenesis and invasion.

loss of heterozygosity mannose 6-phosphate/insulin-like growth factor 2 receptor microsatellite instability tumor suppressor gene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hankins GR, De Souza AT, Bentley RC, Patel MR, Marks JR, Iglehart JD, Jirtle RL: M6P/IGF2 receptor: a candidate breast tumor suppressor gene. Oncogene 12:2003–2009, 1996Google Scholar
  2. 2.
    De Souza AT, Hankins GR, Washington MK, Orton TC, Jirtie RL: M6P/IGF2R gene is mutated in human hepatocellular carcinomas with loss of heterozygosity. Nat Genet 11:447–449, 1995Google Scholar
  3. 3.
    Souza R, Appel R, Yin J, Wang S, Smolinski K, Abraham J, Zou T, Shi Y, Lei J, Cottrell J, Cymes K, Biden K, Simms L, Leggett B, Lynch P, Frazier M, Powell S, Harpaz N, Sugimura H, Young J, Meltzer S: Microsatellite instability in the insulin-like growth factor II receptor gene in gastrointestinal tumours. Nat Genet 14:255–257, 1996Google Scholar
  4. 4.
    Morgan DO, Edman JC, Standring DN, Fried VA, Smith MC, Roth RA, Rutter WJ: Insulin-like growth factor II receptor as a multifunctional binding protein. Nature 329:301–307, 1987Google Scholar
  5. 5.
    Roth RA: Structure of the receptor for insulin-like growth factor II: The puzzle amplified. Science 239:1269–1271, 1988Google Scholar
  6. 6.
    Ellis MJC, Garmroudi F, Cullen K: Insulin receptors (IGF1 and IGF2). In: Bertino J (ed) Encyclopedia of Cancer. Academic Press, San Diego, 1997, vol. 2, pp 927–939Google Scholar
  7. 7.
    Ellis MJC, Leav BA, Yang Z, Rasmussen A, Pearce A, Zweibel JA, Lippman ME, Cullen KJ: Affinity for the insulin-like growth factor-II (IGF-II) receptor inhibits autocrine IGF-II activity in MCF-7 breast cancer cells. Mol Endocrinol 10:286–297, 1996Google Scholar
  8. 8.
    Neilsen FC, Haselbacher G, Christiansen J, Lake M, Gronborg M, Gammeltoft S: Biosynthesis of 10 kDa and 7.5 kDa insulin-like growth factor II in a human rhabdomyosarcoma cell line. Mol Cell Endocrinol 93:87–95, 1993Google Scholar
  9. 9.
    Kornfeld S: Structure and function of the mannose 6-phosphate /insulin-like growth factor II receptors. Annu Rev Biochem 61:307–330, 1992Google Scholar
  10. 10.
    Dennis P, Rifkin D: Cellular activation of latent transforming growth factor β requires binding to the cation-independent mannose-6-phosphate/insulin-like growth factor type II receptor. Proc Natl Acad Sci USA 88:580–584, 1991Google Scholar
  11. 11.
    Kojima S, Nara K, Rifkin DB: Requirement for transglutaminase in the activation of latent transforming growth factor β in bovine endothelial cells. J Cell Biol 121:439–448, 1993Google Scholar
  12. 12.
    Volpert O, Jackson D, Bouck N, Linzer DIH: The insulin-like growth factor II/mannose 6-phosphate receptor is required for proliferin-induced angiogenesis. Endocrinology 137:3871–3876, 1996Google Scholar
  13. 13.
    Dahms N, Rose P, Molkentin J, Zhang Y, Brzycki M: The bovine mannose 6 phosphate/insulin-like growth factor II receptor. The role of arginine residues in mannose 6-phosphate binding. J Biol Chem 268:5457–5463, 1993Google Scholar
  14. 14.
    Dahms N, Wick D, Brzycki-Wessell M: The bovine mannose 6-phosphate/insulin-like growth factor II receptor: localization of the insulin-like growth factor II binding site to domains 5–11. J Biol Chem 269:3802–3809, 1994Google Scholar
  15. 15.
    Garmroudi F, MacDonald RG: Localization of the insulin-like growth factor II (IGF-II) binding/cross-linking site of the IGF-II/mannose 6-phosphate receptor to extracellular repeats 10–11. J Biol Chem 269:26944–26952, 1994Google Scholar
  16. 16.
    Garmroudi F, Devi G, Slentz D, Scaffer B, MacDonald R: Truncated forms of the insulin-like growth factor II (IGF-II)/mannose 6-phosphate receptor encompassing the IGF-II binding site: Characterization of a point mutation that abolishes IGF-II binding. Mol Endocrinol 16:642–651, 1996Google Scholar
  17. 17.
    Mathieu M, Rochefort H, Barenton B, Prebois C, Vignon F: Interactions of cathepsin-D and insulin-like growth factor-II (IGF-II) on the IGF-II/mannose-6-phosphate receptor in human breast cancer cells and possible consequences on mitogenic activity of IGF-II. Mol Endocrinol 4:1327–1335, 1990Google Scholar
  18. 18.
    Kiess W, Thomas CL, Greenstein LA, Lee L, Sklar MM, Rechler MM, Sahagian GG, Nissley SP: Insulin-like growth factor-II (IGF-II) inhibits both the cellular uptake of beta-galactosidase and the binding of beta-galactosidase to purified IGF-II/mannose 6-phosphate receptor. J Biol Chem 264:4710–4714, 1989Google Scholar
  19. 19.
    Vignon F, Rochefort H: Interactions of pro-cathepsin D and IGF-II on the mannose-6-phosphate/IGF-II receptor. Breast Cancer Res Treat 22:47–57, 1992Google Scholar
  20. 20.
    Nishimoto I, Murayama Y, Katada T, Ui M, Ogata E: Possible direct linkage of insulin-like growth factor receptor with guanine nucleotide-binding proteins. J Biol Chem 264:14029–14038, 1989Google Scholar
  21. 21.
    Nishimoto I, Hata Y, Otaga E, Kojima I: Insulin-like growth factor II stimulates calcium flux in competent BALB/c 3T3 cells primed with epidermal growth factor. Characteristics of calcium influx and involvement of GTP-binding protein. J Biol Chem 262:12120–12126, 1987Google Scholar
  22. 22.
    Okamoto T, Ohkuni Y, Ogata E, Nishimoto I: Distinct mode of G protein activation due to single residue substitution of active IGF-II receptor peptide Arg2410-Lys2423: evidence for stimulation acceptor region other than C-terminus of G. Biochem Biophys Res Commun 179:10–16, 1991Google Scholar
  23. 23.
    Okamoto T, Katata T, Murayama Y, Ui M, Ogata E, Nishimoto I: A simple structure encodes G protein-activating function of the IGF-II/mannose 6-phosphate receptor. Cell 62:709–717, 1990Google Scholar
  24. 24.
    Korner C, Nurnberg B, Uhde M, Braulke T: Mannose 6-phosphate/insulin-like growth factor II receptor fails to interact with G-proteins. J Biol Chem 270:287–295, 1995Google Scholar
  25. 25.
    Lobel P, Fujimoto K, Ye R, Griffiths G, Kornfeld S: Mutations in the cytoplasmic domain of the 275 kd mannose 6-phosphate receptor differentially alter lysosomal enzyme sorting and endocytosis. Cell 57:787–796, 1989Google Scholar
  26. 26.
    MacDonald RG, Pfeffet SR, Coussens L, Tepper MA, Brocklebank CM, Mole JE, Anderson JK, Chen E, Czech MP: A single receptor binds both insulin-like growth factor II and mannose-6-phosphate. Science 239:1134–1137, 1988Google Scholar
  27. 27.
    Chen H, Remmler J, Delaney J, Messner D, Lobel P: Mutational analysis of the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor. J Biol Chem 268:22338–22346, 1993Google Scholar
  28. 28.
    Kornfeld S, Mellman I: The biogenesis of lysosomes. Annu Rev Cell Biol 5:483–525, 1989Google Scholar
  29. 29.
    Oka Y, Czech MP: The type II insulin-like growth factor receptor is internalized and recycles in the absence of ligand. J Biol Chem 261:9090–9093, 1986Google Scholar
  30. 30.
    Storrie B, Desjardins M: The biogenesis of lysosomes: is it a kiss and run, continuous fusion and fission process? Bioessays 18:895–903, 1996Google Scholar
  31. 31.
    Wendland M, Waheed A, Schmidt B, Hille A, Nagel G, von Figura K, Pohlman R: Glycosylation of the Mr 46,000 mannose 6-phosphate receptor. J Biol Chem 266:4598–4604, 1991Google Scholar
  32. 32.
    Chao HH, Waheed A, Pohlman R, Hille A, von Figura K: Mannose 6-phosphate receptor dependent secretion of Iysosomal enzymes. EMBO J 9:3507–3513, 1990Google Scholar
  33. 33.
    Capony F, Braulke T, Rougeot C, Roux S, Montcourrier P, Rochefort H: Specific mannose-6-phosphate receptor-independent sorting of pro-cathepsin D in breast cancer cells. Exp Cell Res 215:154–163, 1994Google Scholar
  34. 34.
    Purchio AF, Cooper JA, Brunner AM, Lioubin MN, Gentry LE, Kovaeina KS, Roth RA, Marquardt H: Identification of mannose 6-phosphate in two asparagine-linked sugar chains of recombinant transforming growth factor-β-1 precursor. J Biol Chem 263:14211–14215, 1988Google Scholar
  35. 35.
    De Souza A, Tamada T, Mills J, Jirtle R: Imprinted genes in liver carcinogenesis. FASEB J 11:60–67, 1997Google Scholar
  36. 36.
    Wang Z-Q, Fung MR, Barlow DP, Wagner EF: Regulation of embryonic growth and lysosomal targeting by the imprinted Igf2/Mpr gene. Nature 372:464–467, 1994Google Scholar
  37. 37.
    Kaartinen V, Voncken J, Shuler C, Warburton D, Bu D, Heisterkamp N, Groffen J: Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat Genet 11:415–421, 1995Google Scholar
  38. 38.
    Geiser A, Letterio J, Kulkarni A, Karlsson S, Roberts A, Sporn M: Transforming growth factor beta 1 (TGF-beta 1) controls expression of major histocompatibility genes in the postnatal mouse: aberrant histocompatibility antigen expression in the pathogenesis of the TGF-beta 1 null mouse phenotype. Proc Natl Acad Sci USA 90:9944–9948, 1993Google Scholar
  39. 39.
    Dang H, Geiser AG, Letterio JJ, Nakabayashi T, Kong L, Fernandes G, Talal N: SLE-like autoantibodies and Sjogren's syndrome-like lymphoproliferation in TGF-beta knockout mice. J Immunol 155:3205–3212, 1995Google Scholar
  40. 40.
    Lee S-J, Nathans D: Proliferin secreted by cultured cells binds to mannose 6-phosphate receptors. J Biol Chem 263:3521–3535, 1988Google Scholar
  41. 41.
    Nelson JT, Rosenweig N, Nilsen-Hamilton M: Characterization of the mitogen-regulated protein (proliferin) receptor. Endocrinology 136:283–288, 1995Google Scholar
  42. 42.
    Jackson D, Volpert O, Bouck N, Linzer DIH: Stimulation and inhibition of angiogenesis by placental proliferin and proliferin-related protein. Science 266:1581–1584, 1994Google Scholar
  43. 43.
    Lau MMH, Stewart CEH, Liu Z, Bhatt H, Rotwein P, Stewart CL: Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality. Genes Dev 8:2953–2963, 1994Google Scholar
  44. 44.
    Nissley SP, Rechler MM: Insulin-like growth factors: biosynthesis, receptors, and carrier proteins. Hormones, Proteins and Peptides 12:127–203, 1986Google Scholar
  45. 45.
    Krywicki RF, Yee D: The insulin-like growth factor family of ligands, receptors and binding proteins. Breast Cancer Research Treatment 22:7–19, 1992Google Scholar
  46. 46.
    Ellis MJC, Yang Z, Schumaker L, Pearce A, Arun B, Oates A: Suppression of rhabdomyosarcoma cell growth by mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) overexpression. Proc AACR 38: Abstract 473, 1997Google Scholar
  47. 47.
    Unterman T, Simmons R, Glick R, Ogata E: Circulating levels of insulin, insulin-like growth factor-I (IGF-I), IGF-II, and IGF-binding proteins in the small for gestational age fetal rat. Endocrinology 132:327–336, 1993Google Scholar
  48. 48.
    Woods K, Camacho-Hubner C, Savage M, Clark A: Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor 1 gene. N Engl J Med 335:1363–1367, 1996Google Scholar
  49. 49.
    Baker J, Hardy MP, Zhou J, Bondy C, Lupu F, Bellve A, Efstratiadis A: Effects of an Igfl gene null mutation on mouse reproduction. Mol Endocrinol 10:903–918, 1996Google Scholar
  50. 50.
    Laron Z: An update on Laron syndrome. Arch Dis Child 68:345–346, 1993Google Scholar
  51. 51.
    Giani C, Cullen KJ, Campani D, Rasmussen A: IGF-II mRNA and protein are expressed in the stroma of invasive breast cancers: an in situ hybridization and immunohistochemical study. Breast Cancer Res Treat 41:43–50, 1996Google Scholar
  52. 52.
    Huynh H, Alpert L, Pollak M: Pregnancy-dependent growth of mammary tumors is associated with over-expression of insulin-like growth factor II. Cancer Res 56:3651–3654, 1996Google Scholar
  53. 53.
    Blackshear PJ: The MARCKS family of cellular protein kinase C substrates. J Biol Chem 268:1501–1504, 1993Google Scholar
  54. 54.
    Parsons R, Mycroff L, Liu R, Willson J, Markowitz S, Kinzler K, Vogelstein B: Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer. Cancer Res 55:5548–5550, 1995Google Scholar
  55. 55.
    Myeroff L, Parsons R, Kim S, Hedrick L, Cho K, Orth K, Mathis M, Kinzler K, Lutterbaugh J, Park K: A transtorming growth factor beta receptor type II gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. Cancer Res 55:5545–5547, 1995Google Scholar
  56. 56.
    Aldaz C, Chen T, Sahin A, Cunningham J, Bondy M: Comparative allelotype of in situ and invasive human breast cancer: high frequency of microsatellite instability in lobular breast carcinomas. Cancer Res 55:3976–3981, 1995Google Scholar
  57. 57.
    Cunningham J, Wang H, Sahin A, Mastromarino C, Bondy M, Aldaz C: Microsatellite instability as a predictor of a second breast cancer. Proceedings AACR 38: Abstract 1007, 1997Google Scholar
  58. 58.
    De Leon DD, Terry C, Asmerom Y, Nissley P: Insulin-like growth factor II modulates the routing of cathepsin D in MCF-7 breast cancer cells. Endocrinol 137:1851–1859, 1996Google Scholar
  59. 59.
    Boyer MJ, Tannock IF: Lysosomes, lysosomal enzymes and cancer. Adv Cancer Res 60:269–291, 1993Google Scholar
  60. 60.
    Sleat DE, Chen TL, Raska K, Lobel P: Increased levels of glycoproteins containing mannose 6-phosphate in human breast carcinomas. Cancer Res 55:3424–3430, 1995Google Scholar
  61. 61.
    Weis-Garcia F, Massague J: Complementation between kinase-defective and activation-defective TGFβ receptor reveals a novel form of receptor cooperativity essential for signaling. EMBO J 15:276–289, 1996Google Scholar
  62. 62.
    Massague J: TGFβ signaling: receptors, transducers, and Mad proteins. Cell 85:947–950, 1996Google Scholar
  63. 63.
    Pierce DFJ, Gorska AE, Chytil A, Meise KS, Page DL, Coffey RJJ, Moses HL: Mammary tumor suppression by transforming growth factor beta 1 transgene expression. Proc Natl Acad Sci USA 92:4254–4258, 1995Google Scholar
  64. 64.
    Sue S, Chari R, Kong F, Mills J, Fine R, Jirtle R, Meyers W: Transforming growth factor-beta receptors and mannose 6-phosphate/insulin-like growth factor-II receptor expression in human hepatocellular carcinoma. Ann Surg 222:171–178, 1995Google Scholar
  65. 65.
    Jirtle RL, Hankins GR, Reisenbichler H, Boyer IJ: Regulation of mannose 6-phosphate/insulin-like growth factor-II receptors and transforming growth factor beta during liver tumor promotion with phenobarbital. Carcinogenesis 15:1473–1478, 1994Google Scholar
  66. 66.
    Wang S, Souza R, Abraham J, Yin J, Zou T, Smolinski K, Balcer-Kubiczek E, Harrison G, Young J, Sugimura H, Melzer S: Immunocytochemical evidence that IGFIIR gene mutation by microsatellite instability (MI) functionally inactivates the gene in human gastro-intestinal tumors. Proceedings AACR 38: Abstract 491, 1997Google Scholar
  67. 67.
    Yee D, Cullen KJ, Paik S, Perdue JF, Hampton B, Schwartz A, Lippman ME, Rosen N: Insulin-like growth factor II mRNA expression in human breast cancer. Cancer Research 48:6691–6696, 1988Google Scholar
  68. 68.
    Paik S: Expression of IGF-I and IGF-II mRNA in breast tissue. Breast Cancer Res Treat 22:31–38, 1992Google Scholar
  69. 69.
    Cullen K, Yee D, Sly W, Perdue J, Hampton B, Lippman M, Rosen N: Insulin-like growth factor receptor expression and function in human breast cancer. Cancer Res 50:48–53, 1990Google Scholar
  70. 70.
    Plaut K, Ikeda M, Vonderhaar B: Role of growth hormone and insulin-like growth factor-I in mammary development. Endocrinology 133:1843–1848, 1993Google Scholar
  71. 71.
    Baserga R: Oncogenes and the strategy of growth factors. Cell 79:927–930, 1994Google Scholar
  72. 72.
    LeRoith D: Insulin-like growth factors and cancer. Ann Int Med 122:54–59, 1995Google Scholar
  73. 73.
    Harrington EA, Bennett MR, Fanidi A, Evan GI: c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines. EMBO J 13:3286–3295, 1994Google Scholar
  74. 74.
    Christofori G, Naik P, Hanahan D: A second signal supplied by insulin-like growth factor II in oncogene-induced tumorigenesis. Nature 369:414–418, 1994Google Scholar
  75. 75.
    Bates P, Fisher R, Ward A, Richardson L, Hill DJ, Graham CF: Mammary cancer in transgenic mice expressing insulin-like growth factor II (IGF-II). Br J Cancer 72:1189–1193, 1995Google Scholar
  76. 76.
    Stewart A, Johnson M, May F, Westley B: Role of insulin-like growth factors and type I insulin-like growth factor receptor in the estrogen stimulated proliferation of human breast cancer cells. J Biol Chem 265:21172–21178, 1990Google Scholar
  77. 77.
    Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H, et al: Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270:1491–1494, 1995Google Scholar
  78. 78.
    Furlanetto R, Harwell S, Frick K: Insulin-like growth factor-I induces cyclin-D1 expression in MG63 human osteosarcoma cells in vitro. Mol Endocrinol 8:510–517, 1994Google Scholar
  79. 79.
    Zwijsen R, Wientjens E, Klompmaker R, van de Sman J, Bernards R, Michalides R: CDK-independent activation of estrogen receptor by Cyclin D1. Cell 88:405–415, 1997Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Adam J. Oates
    • 1
  • Lisa M. Schumaker
    • 1
  • Sara B. Jenkins
    • 1
  • Amelia A. Pearce
    • 1
  • Stacey A. DaCosta
    • 1
  • Banu Arun
    • 1
  • Matthew J.C. Ellis
    • 1
  1. 1.Lombardi Cancer CenterGeorgetown UniversityWashington DCUSA

Personalised recommendations