Plant Molecular Biology

, Volume 37, Issue 2, pp 205–215 | Cite as

Cloning, characterization and expression of carbonic anhydrase from the cyanobacterium Synechocystis PCC6803

  • Anthony K.C. So
  • George S. Espie


A 3.3 kb HindIII restriction-digest DNA fragment was isolated from a Synechocystis sp. strain PCC6803 subgenomic plasmid library which strongly hybridized to a 349 bp fragment of the icfA (ccaA) gene from Synechococcus sp. strain PCC7942. DNA sequence analysis of the fragment revealed three open reading frames (ORFs), two of which potentially coded for pantothenate synthetase (ORF275) and cytidylate kinase (ORF230). The third, ORF274, was 825 bp in length, encoding a deduced polypeptide of 274 aa (M_r, 30747) that bears 55% sequence identity to the Synechococcus icfA (ccaA) translation product, a β-type carbonic anhydrase (CA). A 932 bp EcoRI fragment containing ORF274 was subcloned into an expression vector and the construct was transformed into Escherichia coli for overexpression. Electrometric assays for CA activity revealed that whole cell extracts containing the recombinant protein significantly enhanced the rate of conversion of CO_2 to HCO-_3 and that 98% of this catalytic activity was inhibited by ethoxyzolamide, a well-characterized CA inhibitor. Antisera derived against the overexpressed protein recognized a 30.7 kDa protein that was predominantly associated with the isolated carboxysome fraction from Synechocystis. These results provide molecular and physiological evidence for the identification of a ccaA homologue in Synechocystis PCC6803 that encodes a carboxysomal β-type CA.

carbonic anhydrase carboxysome cyanobacteria cytidylate kinase pantothenate synthetase Synechocystis PCC6803 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alber B, Ferry JG: A carbonic anhydrase from the archaeon Methanosarcina thermophila. Proc Natl Acad Sci USA 91: 6909–6913 (1994).Google Scholar
  2. 2.
    Allen MM: Simple conditions for the growth of unicellular bluegreen algae on plates. J Phycol 4: 1–4 (1968).Google Scholar
  3. 3.
    Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K: Current Protocols in Molecular Biology. John Wiley, New York (1993).Google Scholar
  4. 4.
    Badger MR, Price GD: Carbonic anhydrase activity associated with the cyanobacterium Synechococcus PCC7942. Plant Physiol 89: 51–60 (1989).Google Scholar
  5. 5.
    Badger MR, Price GD: The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 45: 369–392 (1994).Google Scholar
  6. 6.
    Bedu S, Joset F: Studies on the carbonic anhydrase activity in Synechocystis PCC6803 wild type and an acetazolamideresistant mutant. Can J Bot 69: 1103–1108 (1991).Google Scholar
  7. 7.
    Bedu S, Laurent B, Joset F: Membranous and soluble carbonic anhydrase activity in a cyanobacterium, Synechocystis PCC6803. In: Murata N (ed) Research in Photosynthesis, Vol III, pp. 819–822, Kluwer Academic Publishers, Dordrecht, Netherlands (1992).Google Scholar
  8. 8.
    Bedu S, Peltier G, Joset F: Correlation between carbonic anhydrase activity and inorganic carbon internal pool in strain Synechocystis PCC6174. Plant Physiol 90: 470–474 (1989).Google Scholar
  9. 9.
    Bradford MM: A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principles of protein dye binding. Anal Biochem 72: 245–248 (1976).Google Scholar
  10. 10.
    Codd GA: Carboxysomes and ribulose bisphosphate carboxylase/oxygenase. In: Rose AH (ed) Advances in Microbial Physiology, vol 29, pp. 115–164. Academic Press, San Diego (1988).Google Scholar
  11. 11.
    Coleman JE: Chemical reactions of sulfonamides with carbonic anhydrase. Annu Rev Pharmacol 15: 221–242 (1975).Google Scholar
  12. 12.
    Espie GS, Canvin DT: Evidence for Na+-independent HCO3 uptake by the cyanobacterium Synechococcus leopoliensis. Plant Physiol 84: 125–130 (1987).Google Scholar
  13. 13.
    Firus O, Kostrikina NA, Biryuzova VI, Romanov AK: Location of carbonic anhydrase in the cyanobacterium Synechococcus cedrorum. Sov Plant Physiol 32: 599–608 (1985).Google Scholar
  14. 14.
    Fricke J, Neuhard J, Kelln RA, Pedersen S: The cmk gene encoding cytidine monophosphate kinase is located in the rpsA operon and is required for normal replication rate in Escherichia coli. J Bact 177: 517–523 (1995).Google Scholar
  15. 15.
    Fridlyand L, Kaplan A, Reinhold L: Quantitative evaluation of the role of a putative CO2-scavenging entity in the cyanobacterial CO2-concentrating mechanism. Biosystems 37: 229–238 (1996).Google Scholar
  16. 16.
    Fukuzawa F, Suzuki E, Komukai Y, Miyachi S: A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon fixation by Synechococcus PCC7942. Proc Natl Acad Sci USA 89: 4437–4441 (1992).Google Scholar
  17. 17.
    Golden SS, Brusslan J, Haselkorn R: Genetic engineering of the cyanobacterial chromosome. Meth Enzymol 153: 215–231 (1987).Google Scholar
  18. 18.
    Guilloton MB, Korte JJ, Lamblin AF, Fuchs JA, Anderson, PM: Carbonic anhydrase in Escherichia coli. A product of the cyn operon. J Biol Chem 267: 3731–3734 (1992).Google Scholar
  19. 19.
    Guilloton MB, Lamblin AF, Kozliak EI, Gerami-Nejad M, Tu C, Silverman DN, Anderson PM, Fuchs JA: A physiological role for cyanateinduced carbonic anhydrase in Escherichia coli. J Bact 175: 1443–1451 (1993).Google Scholar
  20. 20.
    Hewett-Emmett D, Tashian RE: Functional diversity, conservation, and convergence in the evolution of the α, β, and γ-carbonic anhydrase gene families. Mol Phylogenet Evol 5: 50–77 (1996).Google Scholar
  21. 21.
    Ingle RK, Colman B: Carbonic anhydrase levels in blue-green algae. Can J Bot 53: 2385–2387 (1975).Google Scholar
  22. 22.
    Jones CE, Brook JM, Buck D, Abell C, Smith AG: Cloning and sequencing of the Escherichia coli panB gene, which encodes ketopantoate hydroxymethyltransferase, and overexpression of the enzyme. J Bact 175: 2125–2130 (1993).Google Scholar
  23. 23.
    Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Wantanabe A, Yamada M, Yasuda M, Tabata S: Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3: 109–136 (1996).Google Scholar
  24. 24.
    Kaplan A, Schwarz R, Ariel R, Reinhold L: The ‘CO2concentating mechanism’ of cyanobacteria: physiological, molecular and theoretical studies. Bot Mag (Tokyo) Special Issue: 53–71 (1990).Google Scholar
  25. 25.
    Karrasch M, Bott M, Thauer RK: Carbonic anhydrase activity in acetate grown Methanosarcina barkeri. Arch Microbiol 151: 137–142 (1989).Google Scholar
  26. 26.
    Laemmli UR: Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature 227: 680 (1970).Google Scholar
  27. 27.
    Lanaras T, Hawthornthwaite AM, Codd GA: Localization of carbonic anhydrase in the cyanobacterium Chlorogloeopsis fritschii. FEMS Microbiol Lett 26: 285–288 (1985).Google Scholar
  28. 28.
    Majeau N, Coleman JR: Isolation and characterization of a cDNA coding for pea chloroplastic carbonic anhydrase. Plant Physiol 95: 264–268 (1991).Google Scholar
  29. 29.
    Maren TH, Sanyal G: The activity of sulfonamides and anions against the carbonic anhydrases of animals, plants and bacteria. Annu Rev Pharmacol Toxicol 23: 439–459 (1983).Google Scholar
  30. 30.
    McKay RML, Gibbs SP, Espie GS: Effect of dissolved inorganic carbon on the expression of carboxysomes, localization of Rubisco and the mode of inorganic carbon transport in cells of the cyanobacterium Synechococcus UTEX 625. Arch Microbiol 159: 21–29 (1993).Google Scholar
  31. 31.
    Miller AG, Espie GS, Canvin DT: Physiological aspects of CO2 and HCO3 transport by cyanobacteria: a review. Can J Bot 69: 1151–1160 (1990).Google Scholar
  32. 32.
    Price GD, Badger MR: Ethoxyzolamide inhibition of CO2 uptake in the cyanobacterium Synechococcus PCC7942 without apparent inhibition of internal carbonic anhydrase activity. Plant Physiol 89: 37–43 (1989).Google Scholar
  33. 33.
    Price GD, Badger MR: Expression of human carbonic anhydrase in the cyanobacterium Synechococcus PCC7942 creates a high CO2-requiring phenotype. Evidence for a central role for carboxysomes in the CO2 concentrating mechanism. Plant Physiol 91: 505–513 (1989).Google Scholar
  34. 34.
    Price GD, Badger MR: Isolation and characterization of high CO2-requiring mutants of the cyanobacterium Synechococcus PCC7942. Two phenotypes that accumulate inorganic carbon but are apparently unable to generate CO2 within the carboxysome. Plant Physiol 91: 514–525 (1989).Google Scholar
  35. 35.
    Price GD, Badger MR: Evidence for the role of carboxysomes in the cyanobacterial CO2-concentrating mechanism. Can J Bot 69: 963–973 (1991).Google Scholar
  36. 36.
    Price GD, Coleman JR, Badger MR: Association of carbonic anhydrase activity with carboxysomes isolated from the cyanobacterium Synechococcus PCC7942. Plant Physiol 100: 784–793 (1992).Google Scholar
  37. 37.
    Reinhold L, Kosloff R, Kaplan A: A model for inorganic carbon fluxes and photosynthesis in cyanobacterial carboxysomes. Can J Bot 69: 984–988 (1991).Google Scholar
  38. 38.
    Saiki RK: Amplification of genomic DNA. In: Innis MA, Gelfand DH, Sninsky H, White TJ (eds) PCR Protocols: A Guide to Methods and Applications, pp. 13–20. Academic Press, San Diego (1990).Google Scholar
  39. 39.
    Sakamoto T, Wada H, Nishida I, Ohta H, Murata N: Sequence analysis of aDNAfragment from Synechocystis PCC6803 containing genes homologous to cysE (serine acetyltransferase) and pgi (glucose6phosphate isomerase). Plant Mol Biol 29: 187 (1995).Google Scholar
  40. 40.
    Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).Google Scholar
  41. 41.
    Silverman DN: The catalytic mechanism of carbonic anhydrase. Can J Bot 69: 1070–1078 (1991).Google Scholar
  42. 42.
    Soltes-Rak E, Mulligan ME, Coleman JR: Identification and characterization of a gene encoding a vertebrate-type carbonic anhydrase in cyanobacteria. J Bact 179: 769–774 (1997).Google Scholar
  43. 43.
    Stemler A: The case for chloroplast thylakoid carbonic anhydrase. Physiol Plant 99: 348–353 (1997).Google Scholar
  44. 44.
    Sultemeyer D, Schmidt C, Fock HP: Carbonic anhydrases in higher plants and aquatic microorganisms. Physiol Plant 88: 179–190 (1993).Google Scholar
  45. 45.
    Sung Y, Fuchs JA: Characterization of the cyn operon in Escherichia coli K12. J Bact 263: 14769–14775 (1988).Google Scholar
  46. 46.
    Suzuki E, Shiraiwa Y, Miyachi S: The cellular and molecular aspects of carbonic anhydrase in photosynthetic microorganisms. Prog Phycol Res 10: pp. 2–54 (1994).Google Scholar
  47. 47.
    Tashian RE: The carbonic anhydrases: widening perspectives on their evolution, expression, and function. Bioessays 10: 186–192 (1989).Google Scholar
  48. 48.
    Tyrrell PN, Kandasamy RA, Crotty CM, Espie GS: Ethoxyzolamide differentially inhibits CO2 uptake and Na+-independent and Na+-dependent HCO3_ uptake in the cyanobacterium Synechococcus sp. UTEX 625. Plant Physiol 112: 79–88 (1996).Google Scholar
  49. 49.
    Volokita M, Zenvirth D, Kaplan A, Reinhold L: Nature of the inorganic carbon species actively taken up by the cyanobacterium Anabaena variabilis. Plant Physiol 76: 599–602 (1984).Google Scholar
  50. 50.
    Wilbur KM, Anderson NG: Electrometric and colorimetric determination of carbonic anhydrase. J Biol Chem 176: 147–154 (1948).Google Scholar
  51. 51.
    Yu JW, Price GD, Song L, Badger MR: Isolation of a putative carboxysomal carbonic anhydrase gene from the cyanobacterium Synechococcus PCC7942. Plant Physiol 100: 794–800 (1992).Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Anthony K.C. So
    • 1
  • George S. Espie
    • 1
  1. 1.Department of BotanyUniversity of Toronto at MississaugaMississaugaCanada

Personalised recommendations