Advertisement

Journal of Atmospheric Chemistry

, Volume 29, Issue 3, pp 299–314 | Cite as

Measurement of the NO + O3 Reaction Rate at Atmospheric Pressure Using Realistic Mixing Ratios

  • P. C. Moonen
  • J. N. Cape
  • R. L. Storeton-West
  • R. McCOLM
Article

Abstract

Accurate values for the rate and temperature dependence of the reaction NO + O3 → NO2 + O2 are important in the chemical modelling of photochemical processes in the atmosphere. Previous measurements have been made at low total pressures and/or with very large mixing ratios relative to those observed in the atmosphere. In this study the reaction rate has been measured using a novel approach under tropospheric conditions of temperature and pressure, and at tens of ppb (mixing ratios of 1 in 108) between 263 and 328 K. The resultant Arrhenius expression (k=Ae-Ea/RT) gives a larger activation energy (Ea/R=1670 ± 100) than the recommended literature value (Ea/R=1400 ± 200), and a larger pre-exponential factor (A=5.1 ± 1.6 × 10-12 cf. recommended A=2.0 × 10-12), but the second-order rate constant at 298 K (1.90 × 10-14 molecules cm-3 s-1 ± 10%) is similar to the recommended value. The results confirm a lack of pressure dependence of the reaction, but were made over too small a range in temperature to address the issue of curvature of the simple Arrhenius expression.

rate constant temperaturedependence troposphere 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birks, J.W., Shoemaker, B., Leck, T. J., and Hinton, D. M., 1976: Studies of reactions of importance in the stratosphere. 1. Reaction of nitric oxide with ozone, J. Chem. Phys. 65, 5181–5185.Google Scholar
  2. Borders, R. A. and Birks, J.W., 1982: High-precision measurements of activation energies over small temperature intervals: curvature in the Arrhenius plot for the reaction NO + O3 → NO2 + O2, J. Phys. Chem. 86, 3295–3302.Google Scholar
  3. Calvert, J. G. and Stockwell, W. R., 1983: Deviations from the O3–NO–NO2 photostationary state in tropospheric chemistry, Can. J. Chem. 61, 983–992.Google Scholar
  4. Cantrell, C. A., Shetter, R. E., Calvert, J. G., Parrish, D. D., Fehsenfeld, F. C., Goldan, P. D., Kuster, W., Williams, E. J., Westberg, H. H., Allwine, G., and Martin, R., 1993: Peroxy radicals as measured in ROSE and estimated from photostationary state deviations, J. Geophys. Res. 98, 18355–18366.Google Scholar
  5. Carpenter, L. J., Clemitshaw, K. C., Burgess, R. A., Penkett, S. A., Cape, J. N., and McFadyen, G. G., 1997: Investigation and evaluation of the NOx/O3 photochemical steady state (submitted to Atmos. Environ.).Google Scholar
  6. DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J., 1994: Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Evaluation Number 11, JPL Publication 94–26, National Aeronautics and Space Administration, Jet Propulsion Laboratory, Pasadena, California.Google Scholar
  7. FACSIMILE, 1995: Technical Reference v.4.0. AEA Technology, Harwell.Google Scholar
  8. Kleinman, L., Lee, Y., Springston, S. R., Lee, J. H., Nunnermacker, L., Weinstein-Lloyd, J., Zhou, X., and Newman L., 1995: Peroxy radical concentration and ozone formation rate at a rural site in the southeastern United States, J. Geophys. Res. 100, 7263–7273.Google Scholar
  9. Lippman, H. H., Jesser, B., and Schurath, U., 1980: The rate constant of NO + O3 → NO2 + O2 in the temperature range of 283–443 K, Int. J. Chem. Kinet. 12, 547–554.Google Scholar
  10. Michael, J. V., Allen Jr, J. E., and Brobst, W. D., 1981: Temperature dependence of the NO + O3 reaction rate from 195 to 369 K, J. Phys. Chem. 85, 4109–4117.Google Scholar
  11. Ray, G. W. and Watson, R. T., 1981: Kinetics of the reaction NO + O3 → NO2 + O2 from 212 to 422 K, J. Phys. Chem. 85, 1673–1676.Google Scholar
  12. Schurath, U., Lippmann, H. H., and Jesser, B., 1981: Temperature dependence of the chemiluminescent reaction (1), NO + O3 → NO2(2 A 1; 2 B 1,2) + O2, and quenching of the excited product, Ber. Bunsenges. Phys. Chem. 85, 807–813.Google Scholar
  13. Yang, Y., Stockwell, W. R., and Milford, J. B., 1995: Uncertainties in incremental reactivities of volatile organic compounds, Environ. Sci. Technol. 29, 1336–1345.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • P. C. Moonen
    • 1
  • J. N. Cape
    • 1
  • R. L. Storeton-West
    • 1
  • R. McCOLM
    • 2
  1. 1.Institute of Terrestrial Ecology, Bush EstateMidlothianU.K.
  2. 2.Department of ChemistryUniversity of Edinburgh, The King's BuildingsEdinburghU.K.

Personalised recommendations