Plant Molecular Biology

, Volume 37, Issue 1, pp 87–97 | Cite as

cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy-metal accumulator Brassica juncea L.: evidence for Cd-induction of a putative mitochondrial γ-glutamylcysteine synthetase isoform

  • Holger J. Schäfer
  • Angela Haag-Kerwer
  • Thomas Rausch
Article

Abstract

In roots of Brassica juncea L. cadmium (Cd) exposure (25 µM) induces a massive formation of phytochelatins (PCs), which is accompanied by an only moderate decrease (−20%) of the putative PC precursor glutathione (GSH). As PC formation in roots could be the result of local GSH de novo synthesis and/or depend on GSH import from the shoot, we have analyzed the expression of the enzymes involved in GSH synthesis in the root, namely OAS(thiol)lyase (OAS-TL; catalysing the last step in Cys biosynthesis), γ-glutamylcysteine synthetase (γ-ECS), and glutathione synthetase (GSHS). cDNA clones were isolated from a cDNA library prepared from heavy metal exposed roots. Protein sequences from cDNA clones encoding OAS-TL, γ-ECS, and GSHS, all exhibited putative mitochondrial targeting sequences, however, for OAS-TL also two putative cytosolic isoforms were isolated. Furthermore, we have cloned several metallothionein cDNAs of the MT2 group. Northern blot analysis with coding region probes revealed that in roots of Cd-exposed plants transcript amounts for OAS-TL and GSHS were only moderately increased, whereas γ-ECS mRNA showed a stronger increase. Expression analysis with 3′-UTR probes indicated that among the putative mitochondrial OAS-TL, γ-ECS and GSHS isoforms only γ-ECS was up-regulated in response to Cd exposure. Conversely, transcripts for MT2 appeared to be slightly reduced. The results indicate that in roots Cd-induced PC synthesis correlates with a moderate increase of expression of genes involved in GSH synthesis, the change for γ-ECS being most pronounced.

Brassica juncea L. glutathione phytochelatins OAS(thiol)lyase γ-glutamylcysteine synthetase glutathione synthetase metallothionein 2 cadmium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ausubel F, Brent R, Kingston RE, Moore DD, Seidmann JG, Smith JA, Struhl K: Current Protocols in Molecular Biology Vol 1. Greene Publishing (1987–1995).Google Scholar
  2. 2.
    Barroso C, Vega JM, Gotor C: A new member of the cytosolic O-acetylserine(thiol)lyase gene family in Arabidopsis thaliana. FEBS Lett 363: 1–5 (1995).Google Scholar
  3. 3.
    Brunold C, Rennenberg H: Regulation of sulfur metabolism in plants: first molecular approaches. In: Behnke HD, Lüttge U, Esser K, Kadereit JW, Runge M (eds) Progress in Botany 58, pp. 165–186. SpringerVerlag, Heidelberg/Berlin/New York (1996).Google Scholar
  4. 4.
    Buchanan Wollaston V, Ainsworth C: Leaf senescence in Brassica napus: cloning of senescencerelated genes by substractive hybridization. Plant Mol Biol 33: 821–834 (1997).Google Scholar
  5. 5.
    Chen J, Goldsbrough PB: Increased activity of glutamylcysteine synthetase in tomato cells selected for cadmium tolerance. Plant Physiol 106: 233–239 (1994).Google Scholar
  6. 6.
    Creissen G, Reynolds H, Xue Y, Mullineaux P: Simultaneous targeting of a pea glutathione reductase and of a bacterial fusion protein to chloroplasts andmitochondria in transgenic tobacco. Plant J 8: 167–175 (1995).Google Scholar
  7. 7.
    Gavel Y, von Heijne G: Cleavagesite motifs in mitochondrial targeting peptides. Protein Eng 4: 33–37 (1990).Google Scholar
  8. 8.
    Grill E, Löffler S, Winnacker EL, Zenk MH: Phytochelatins, the heavymetalbinding peptides of plants, are synthesized from glutathione by a specific glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86: 6838–6842 (1989).Google Scholar
  9. 9.
    Grill E, Winnacker EL, Zenk MH: Phytochelatins, a class of heavymetalbinding peptides fromplants are functionally analogous to metallothioneins. Proc Natl Acad Sci USA 84: 439–443 (1987).Google Scholar
  10. 10.
    Grill E, Winnacker EL, Zenk MH: Phytochelatins: the principal heavymetal complexing peptides of higher plants. Science 230: 674–676 (1985).Google Scholar
  11. 11.
    Hartl FU, Pfanner N, Nicholson DW, Neupert W: Mitochondrial protein import. Biochim Biophys Acta 988: 1–45 (1989).Google Scholar
  12. 12.
    Heijne von G, Steppuhn J, Herrmann RG: Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180: 535–545 (1989).Google Scholar
  13. 13.
    Hell R, Bergmann L: Glutamylcysteine synthetase in higher plants: catalytic properties and subcellular localisation. Planta 180: 603–612 (1990).Google Scholar
  14. 14.
    Hell R, Bergmann L: Glutathione synthetase in tobacco suspension cultures: catalytic properties and localisation. Physiol Plant 72: 70–76 (1988).Google Scholar
  15. 15.
    Hell R, Bork C, Bogdanova N, Frolov I, Hauschild R: Isolation and characterisation of two cDNAs encoding for compartement specific isoforms of Oacetylserine (thiol) lyase from Arabidopsis thaliana. FEBS Lett 351: 257–262 (1994).Google Scholar
  16. 16.
    Howden R, Goldsbrough PB, Andersen CR, Cobbett CS: Cadmiumsensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107: 1059–1066 (1995).Google Scholar
  17. 17.
    Hsieh HM, Liu WK, Chang A, Huang PC: RNA expression patterns of a type 2 metallothioneinlike gene from rice. Plant Mol Biol 32: 525–529 (1996).Google Scholar
  18. 18.
    Klapheck S, Schlunz S, Bergmann L: Synthesis of phytochelatins and homophytochelatins in Pisum sativum L. Plant Physiol 107: 515–521 (1995).Google Scholar
  19. 19.
    Kuske CR, Hill KK, Guzman E, Jackson PJ: Subcellular location of Oacetylserine sulfhydrylase isoenzyme in cell cultures and plant tissues of Datura innoxia Mill. Plant Physiol 112: 659–667 (1996).Google Scholar
  20. 20.
    Longemann J, Schell J, Willmitzer L: Improved method for the isolation of RNA from plant tissues. Anal Biochem 163: 16–20 (1987).Google Scholar
  21. 21.
    Löw R, Rausch T: Nonradioactive detection of nucleic acids with biotinylated probes. In: Meier T, Fahrenholz F (eds) A Laboratory Guide to BiotinLabelling in Biomolecule Analysis. BioMethods Vol 7, pp. 201–213. Birkhäuser Verlag, Basel (1996).Google Scholar
  22. 22.
    Lueder DV, Phillips MA: Characterisation of Trypanosoma brucei glutamylcysteine synthetase, an essential enzyme in the biosynthesis of trypanothione (diglutathionespermidine). J Biol Chem 271: 17485–17490 (1996).Google Scholar
  23. 23.
    May MJ, Leaver CJ: Arabidopsis thaliana glutamylcysteine synthetase is structurally unrelated to mammalian, yeast, and Escherichia coli homologs. Proc Natl Acid Sci USA 91: 10059–10063 (1994).Google Scholar
  24. 24.
    Meuwly P, Rauser WE: Alteration of thiol pools in roots and shoots of maize seedlings exposed to cadmium. Plant Physiol 99: 8–15 (1992).Google Scholar
  25. 25.
    Meuwly P, Thibault P, Schwan AL, Rauser WE: Three families of thiol peptides are induced by cadmium in maize. Plant J 7: 391–400 (1995).Google Scholar
  26. 26.
    Murphy A, Zhou J, Goldsbrough PB, Taiz L: Purification and immunological identification of metallothionein 1 and 2 from Arabidopsis thaliana. Plant Physiol 113: 1293–1301 (1997).Google Scholar
  27. 27.
    Murray MG, Thompson WF: Rapid isolation of highmolecular weight plant DNA. Nucl Acids Res 8: 4321–4325 (1980).Google Scholar
  28. 28.
    Noji M, Murakoshi I, Saito K: Molecular cloning of a cysteine synthase from Citrullus vulgaris (watermelon) by genetic complementation in an Escherichia coli cysauxotroph. Mol Gen Genet 244: 57–66 (1994).Google Scholar
  29. 29.
    Ortiz DF, Kreppel L, Speiser DM, Scheel G, McDonald G, Ow DW: Heavy metal tolerance in the fission yeast requires an ATPbinding casettetype vacuolar membrane transporter. EMBO J 11: 3491–3499 (1992).Google Scholar
  30. 30.
    Ortiz DF, Ruscitti T, McCue KF, Ow DW: Transport of metalbinding peptides by HMT1, a fission yeast ABCtype vacuolar membrane protein. J Biol Chem 9: 4721–4728 (1995).Google Scholar
  31. 31.
    Rauser WE: Phytochelatins and related peptides. Plant Physiol 109: 1141–1149 (1995).Google Scholar
  32. 32.
    Rauser WE: Phytochelatins. Annu Rev Biochem 59: 61–86 (1990).Google Scholar
  33. 33.
    Rawlins MR, Leaver CJ, May MJ: Characterisation of an Arabidopsis thaliana cDNA encoding glutathione synthetase. FEBS Lett 376: 81–86 (1995).Google Scholar
  34. 34.
    Reynolds TL, Crawford RL: Changes in abundance of an abscisic acidresponsive early cysteinelabeled metallothionein transcript during pollen embryogenesis in bread wheat (Triticum aestivum). Plant Mol Biol 32: 823–829 (1996).Google Scholar
  35. 35.
    Robinson NJ, Tommey AM, Kuske CR, Jackson PJ: Plant metallothioneins. Biochem J 295: 1–10 (1993).Google Scholar
  36. 36.
    Rolland N, Ruffet ML, Job D, Douce R, Droux M: Spinach chloroplast O-acetylserine (thiol)-lyase exhibits two catalytically nonequivalent pyridoxal-5'-phosphatecontaining active sites. Eur J Biochem 236: 272–282 (1996).Google Scholar
  37. 37.
    Rüegsegger A, Brunold C: Effect of cadmium on γ-glutamylcysteine synthesis in maize seedlings. Plant Physiol 99: 428–433 (1992).Google Scholar
  38. 38.
    Rüegsegger A, Brunold C: Localization of γglutamylcysteine synthase and glutathione synthetase activity inmaize seedlings. Plant Physiol 101: 561–566 (1993).Google Scholar
  39. 39.
    Rüegsegger A, Schmutz D, Brunold C: Regulation of glutathione synthesis by cadmium in Pisumsativum L. Plant Physiol 93: 1579–1584 (1990).Google Scholar
  40. 40.
    Saito K, Tatsuguchi K, Takagi Y, Murakoshi I: Isolation and characterisation of a cDNA that encodes a putative mitochondrionlocalizing isoform of cysteine synthase (Oacetylserine( thiol)lyase) fromSpinacea oleracea. J BiolChem 269: 28187–28192 (1994).Google Scholar
  41. 41.
    Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Enseley BD, Chet I, Raskin I: Phytoremediation: a novel strategy for removal of toxic metals from the environment using plants. Bio/technology 13: 468–474 (1995).Google Scholar
  42. 42.
    Salt DE, Prince EC, Pickering IJ, Raskin I: Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109: 1427–1433 (1995).Google Scholar
  43. 43.
    Salt DE, Rauser WE: MgATPdependent transport of phytochelatin across the tonoplast of oat roots. Plant Physiol 107: 1293–1301 (1995).Google Scholar
  44. 44.
    Schäfer HJ, Greiner S, Rausch T, Haag Kerwer A: In seedlings of the heavy metal accumulator Brassica juncea Cu2+differentially affects transcript amounts for glutamylcysteine synthetase (γ-ECS) and metallothionein (MT2). FEBS Lett 404: 216–220 (1997).Google Scholar
  45. 45.
    Speiser DM, Abrahamson SL, Banuelos G, Ow DW: Brassica juncea produces a phytochelatincadmiumsulfide complex. Plant Physiol 99: 817–821 (1992).Google Scholar
  46. 46.
    Steffens JC: The heavy metalbinding peptides of plants. Annu Rev Plant Physiol Plant Mol Biol 41: 553–575 (1990).Google Scholar
  47. 47.
    Takahashi H, Saito K: Subcellular localisation of spinach cysteine synthase isoforms and regulation of their gene expression by nitrogen and sulfur. Plant Physiol 112: 273–280 (1996).Google Scholar
  48. 48.
    UN: Genome analysis in Brassica with special reference to the experimental formation of Brassica napus and peculiar mode of fertilization. Jap J Bot 7: 389–452 (1935).Google Scholar
  49. 49.
    Ullmann P, Gondet L, Potier S, Bach TJ: Cloning of Arabidopsis thaliana glutathione synthetase (GSH2) by functional complementation of a yeast gsh2 mutant. Eur J Biochem 236: 662–669 (1996).Google Scholar
  50. 50.
    Wang CL, Oliver DJ: Cloning of the cDNAand genomic clones for glutathione synthase from Arabidopsis thaliana and complementation of a gsh2 mutant in fission yeast. Plant Mol Biol 31: 1093–1104 (1996).Google Scholar
  51. 51.
    Whitelaw CA, Le Huquet JA, Thurman DA, Tomsett AB: The isolation and characterization of type II metallothioneinlike genes from tomato (Lycopersicon esculentum L.). Plant Mol Biol 33: 503–511 (1997).Google Scholar
  52. 52.
    Zhou J, Goldsbrough PB: Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell 6: 875–884 (1994).Google Scholar
  53. 53.
    Zhou J, Goldsbrough PB: Structure, organization and expression of the metallothionein gene family in Arabidopsis. Mol Gen Genet 248: 318–328 (1995).Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Holger J. Schäfer
    • 1
  • Angela Haag-Kerwer
    • 1
  • Thomas Rausch
    • 1
  1. 1.Botanisches Institut der Ruprecht-Karls-UniversitätHeidelbergGermany

Personalised recommendations