Advertisement

Systematic Parasitology

, Volume 40, Issue 2, pp 81–92 | Cite as

Allozyme and morphological identification of shape Anisakis, Contracaecum and Pseudoterranova from Japanese waters (Nematoda, Ascaridoidea)

  • Simonetta Mattiucci
  • Lia Paggi
  • Giuseppe Nascetti
  • Hajime Ishikura
  • Kokichi Kikuchi
  • Noriyuki Sato
  • Rossella Cianchi
  • Luciano Bullini
Article

Abstract

Allozyme markers were used to identify anisakid nematodes from marine Japanese waters, morphologically assigned to three species complexes: Anisakis simplex (s. l.), Contracaecum osculatum (s. l.) and Pseudoterranova decipiens (s. l.). Samples assigned to A. simplex (s. l.) were found to correspond genetically to A. simplex sensu stricto, those of C. osculatum (s. l.) to C. osculatum A. No morphological characters are yet available to distinguish sibling species of these two complexes. As to the P. decipiens complex, two distinct species were detected: the first corresponded to P. decipiens C, previously recovered in the northern Atlantic, the second to P. decipiens D from Japan. The two species are genetically well differentiated, with five of the 19 loci tested showing distinct fixed alleles. Their reproductive isolation was proved by the lack of hybrids or recombinants in sympatric samples recovered from the same definitive host, Erignathus barbatus. P. decipiens D was found to correspond morphologically to Porrocaecum azarasi, previously considered a synonym of P. decipiens. Accordingly, the name Pseudoterranova azarasi (Yamaguti & Arima, 1942) n. comb. is proposed for P. decipiens D. Similarly, P. decipiens C fits in general morphology, type-locality and host with Ascaris bulbosa, also previously considered a synonym of P. decipiens. The name Pseudoterranova bulbosa (Cobb, 1888) n. comb. is proposed for P. decipiens C.

Keywords

Morphological Character Species Complex Reproductive Isolation Distinct Species Ascaris 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayala, F.J. (1975) Genetic differentiation during the speciation process. Evolutionary Biology, 8, 1–78.Google Scholar
  2. Baverstock, P.R., Adams, M. & Beveridge, I. (1985) Biochemical differentiation in bile duct cestodes and their marsupial hosts. Molecular and Biochemical Evolution, 2, 321–337.Google Scholar
  3. Berland, B. (1961) Nematodes from some Norwegian marine fishes. Sarsia, 2, 1–50.Google Scholar
  4. Brewer, G.J. & Sing, C.F. (1970) An introduction to isozyme techniques. New York & London: Academic Press, 186 pp.Google Scholar
  5. Bullini, L. (1985) The electrophoretic approach to the study of parasites and vectors. Parassitologia, 27, 1–11.Google Scholar
  6. Bullini, L. & Sbordoni, V. (1980) Electrophoretic studies of geneenzyme systems: Microevolutionary processes and phylogenetic inference. Bollettino di Zoologia, 47(suppl.), 95–112.Google Scholar
  7. Campana-Rouget, Y. & Biocca, E. (1955). Une nouvelle espèce d'Anisakis chez un phoque mediterranéen. Annales de Parasitologie Humaine et Comparée, 30, 477–480.Google Scholar
  8. Cobb, N.A. (1888) Neue parasitische Nematoden In: Kukenthal, W. Beitrage zur Fauna Spitzbergens. Archiv für Naturgeschichte Berlin, 55, 149–159.Google Scholar
  9. Coluzzi, M. & Bullini, L. (1971) Enzyme variants as markers in the study of pre-copulatory isolating mechanisms. Nature, 231, 455–456.Google Scholar
  10. Di Deco, M.A., Orecchia, P., Paggi, L. & Petrarca, V. (1994) Morphometric stepwise discriminant analysis of three genetically identified species within Pseudoterranova decipiens (Krabbe, 1878) (Nematoda: Ascaridida). Systematic Parasitology, 29, 81–88.Google Scholar
  11. Fagerholm, H.P. (1989) Intra-specific variability of the morphology in a single population of the seal parasite Contracaecum osculatum (Rudolphi) (Nematoda, Ascaridoidea) with a redescription of the species. Zoologica Scripta, 18, 33–41.Google Scholar
  12. Gibson, D.I. & Colin, J.A. (1982) The Terranova enigma. Parasitology, 85, (Proc. B.S.P.), xxxvi–xxxvii.Google Scholar
  13. Harris, H. (1966) Enzymes polymorphism in man. Proceedings of the Royal Society, Series B, 164, 298–310.Google Scholar
  14. Krabbe, H. (1878) Sealernes og Tandhvalernes spolorme. Oversigt over det Kongelige Danske Videnskabernes Selskabs Forhandlinger, 1, 43–51, (in Danish with French summary).Google Scholar
  15. Mallet, J.L.B. (1995) A species definition for a Modern Synthesis. Trends in Ecology and Evolution, 10, 294–299.Google Scholar
  16. Margolis, L. (1956) Parasitic helminths and arthropods from pinnipedia of the Canadian Pacific coast. Journal of the Fisheries Research Board of Canada, 13, 489–505.Google Scholar
  17. Mattiucci, S., Nascetti, G., Cianchi, R., Paggi, L., Arduino, P., Margolis, L., Brattey, J., Webb, S., D'Amelio, S., Orecchia, P. & Bullini, L. (1997) Genetic and ecological data on the Anisakis simplex complex, with evidence for a new species (Nematoda, Ascaridoidea, Anisakidae). Journal of Parasitology, 86, 401–416.Google Scholar
  18. Mayr, E. (1963) Animal species and evolution. Cambridge, Massachusetts: Belknap Press, Harvard University Press, 797 pp.Google Scholar
  19. Mayr, E. (1970) Populations, species and evolution. Cambridge, Massachusetts: Belknap Press, Harvard University Press, 453 pp.Google Scholar
  20. Myers, B.J. (1959) Phocanema, a new genus for the anisakid nematode of seals. Canadian Journal of Zoology, 37, 459–465.Google Scholar
  21. Nadler, S.A. (1987) Biochemical and immunological systematics in some ascaridoid nematodes: genetic divergence between congeners. Journal of Parasitology, 73, 811–816.Google Scholar
  22. Nadler, S.A. (1990) Molecular approaches to studying helminth population genetics and phylogeny. International Journal for Parasitology, 20, 11–29.Google Scholar
  23. Nascetti, G., Cianchi, R., Mattiucci, S., D'Amelio, S., Orecchia, P., Paggi, L., Brattey, J., Berland, B., Smith, J.W. & Bullini, L. (1993) Three sibling species within Contracaecum osculatum (Nematoda, Ascaridida, Ascaridoidea) from the Atlantic Arctic-Boreal region: reproductive isolation and host preferences. International Journal for Parasitology, 23, 105–120.Google Scholar
  24. Nascetti, G., Paggi, L., Orecchia, P., Smith, J.W., Mattiucci, S. & Bullini, L. (1986) Electrophoretic studies on the Anisakis simplex complex (Ascaridida: Anisakidae) from the Mediterranean and North-East Atlantic. International Journal for Parasitology, 16, 633–640.Google Scholar
  25. Nei, M. (1972) Genetic distance between populations. American Naturalist, 106, 283–292.Google Scholar
  26. Orecchia, P., Mattiucci, S., D'Amelio, S., Paggi, L., Plötz, J., Cianchi, R., Nascetti, G., Arduino, P. & Bullini, L. (1994) Two new members in the Contracaecum osculatum complex (Nematoda, Ascaridoidea) from the Antarctic. International Journal for Parasitology, 24, 367–377.Google Scholar
  27. Orecchia, P., Paggi, L., Mattiucci, S., Smith, J.W., Nascetti, G. & Bullini, L. (1986) Electrophoretic identification of larvae and adults of Anisakis (Ascaridida: Anisakidae). Journal of Helmithology, 60, 331–339.Google Scholar
  28. Paggi, L. & Bullini, L. (1994) Molecular taxonomy in anisakids. Bulletin of the Scandinavian Society of Parasitology, 4, 25–39.Google Scholar
  29. Paggi, L., Nascetti, G., Cianchi, R., Orecchia, P., Mattiucci, S., D'Amelio, S., Berland, B., Brattey, J., Smith, J.W. & Bullini, L. (1991) Genetic evidence for three species within Pseudoterranova decipiens (Nematoda, Ascaridida, Ascaridoidea) in the North Atlantic and Norwegian and Barents seas. International Journal for Parasitology, 21, 195–212.Google Scholar
  30. Paggi, L., Sato, N., Ishikura, H., Kikuchi, K., D'Amelio, S., Mattiucci, S., Orecchia, P., Cianchi, R., Nascetti, G. & Bullini, L. (1992) Genetic variation of anisakid parasites from Japanese waters. Parassitologia, 34(suppl. 1), 219–220.Google Scholar
  31. Paggi, L., Nascetti, G., Orecchia, P., Mattiucci, S. & Bullini, L. (1985) Biochemical taxonomy of ascaridoid nematodes. Parassitologia, 27, 105–112.Google Scholar
  32. Petrarca, V., D'Amelio, S., Di Deco, M.A., Mattiucci, S. & Paggi, L. (1996) Morphometric analysis of a fourth taxon in the Pseudoterranova decipiens complex (Nematoda, Anisakidae). Abstracts EMOP VII, Parassitologia, 38, 122.Google Scholar
  33. Poulik, M.D. (1957) Starch gel electrophoresis in a discontinuous system of buffers. Nature, 180, 1477.Google Scholar
  34. Richardson, B.J., Baverstock, P.R. & Adams, M. (1986) Allozyme electrophoresis. A handbook for animal systematics and population studies. Sidney: Academic Press, 410 pp.Google Scholar
  35. Rudolphi, C.A. (1802) Fortsetzung der Beobachtungen über die Eingeweiderwürmer. Archiv für Zoologie und Zootomie (Braunschweig), 2, 1–67.Google Scholar
  36. Rudolphi, C. A. (1809) Entozoorum sive vermium historia naturalis, Vol. 2, Part 1. Amstelaedami, 457 pp.Google Scholar
  37. Selander, R.K., Smith, M.H., Yang, S.Y., Johnson, W.E. & Gentry, J.B. (1971) Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation of the old-field mouse (Peromyscus polionotus). Studies in Genetics VI, University Texas Publications (Austin), 7103, 49–90.Google Scholar
  38. Shiraki, T. (1974) Larval nematodes of family Anisakidae (Nematoda) in the Northern Sea of Japan — as causative agent of eosinophilic phlegmone or granuloma in the human gastrointestinal tract. Acta Medica et Biologica, 22, 57–98.Google Scholar
  39. Sokal, R.R. & Rholf, F.J. (1981) Biometry. 2nd Edition. New York: W. H. Freeman and Company, 859 pp.Google Scholar
  40. Wilkinson, L. & Leland, F.J. (1989) SYSTAT: The system for statistics. Evanson, Illinois: SYSTAT Inc.Google Scholar
  41. Wright, S. (1943) Isolation by distance. Genetics, 28, 114–138.Google Scholar
  42. Wright, S. (1951) The genetical structure of populations. Annals of Eugenics, 15, 323–354.Google Scholar
  43. Yamaguti, S. (1951). Studies on the helminth fauna of Japan. Part 46. Nematodes of marine mammals. Arbeiten aus der Medizinischen Fakultat zu Okayama, 7, 307–314.Google Scholar
  44. Yamaguti, S. (1961) Systema helminthum. Vol. III. The nematodes of vertebrates. New York: Interscience Publication, 1,261 pp.Google Scholar
  45. Yamaguti, S. & Arima, S. (1942) Porrocaecum azarasi n. sp. (Nematoda) from the Japanese seal. Transaction of the Sapporo Natural History Society, 17, 113–116.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Simonetta Mattiucci
    • 1
  • Lia Paggi
    • 1
  • Giuseppe Nascetti
    • 2
  • Hajime Ishikura
    • 3
  • Kokichi Kikuchi
    • 3
  • Noriyuki Sato
    • 3
  • Rossella Cianchi
    • 4
  • Luciano Bullini
    • 4
  1. 1.Institute of ParasitologyUniversity of Rome “La Sapienza”RomeItaly
  2. 2.Department of Environmental SciencesTuscia UniversityViterboItaly
  3. 3.Department of Pathology, Sapporo Medical CollegeUniversity School of MedicineSapporoJapan
  4. 4.Department of Genetics and Molecular BiologyUniversity of Rome “La Sapienza”RomeItaly

Personalised recommendations