Advertisement

Journal of Atmospheric Chemistry

, Volume 29, Issue 1, pp 85–107 | Cite as

The Henry's Law Constants of the Haloacetic Acids

  • D. J. Bowden
  • S. L. Clegg
  • P. Brimblecombe
Article

Abstract

Henry's law constants K′H (mol kg-1 atm-1) have been measured between 278.15 K and 308.15 K for the following organic acids: CH2FCOOH (ln(K′H[298.15 K]) = 11.3 ± 0.2), CH2ClCOOH (11.59 ± 0.14), CH2BrCOOH (11.94 ± 0.21), CHF2COOH (10.32 ± 0.10), CHCl2COOH (11.69 ± 0.11), CHBr2COOH (12.33 ± 0.29), CBr3COOH (12.61 ± 0.21), and CClF2COOH (10.11 ± 0.12). The variation of K′H with temperature was determined for all acids except CH2FCOOH and CBr3COOH, with Δr H° for the dissolution reaction ranging from −85.2 ± 2.6 to −57.1 ± 2.5 kJ mol-1, meaning that their solubility is generally more sensitive to temperature than is the case for the simple carboxylic acids. The Henry's law constants show consistent trends with halogen substitution and, together with their high solubility compared to the parent (acetic) acid (ln(K′H[298.15 K]) = 8.61), present a severe test of current predictive models based upon molecular structure. The solubility of haloacetic acids and strong dissociation at normal pH mean that they will partition almost entirely into cloud and fog in the atmosphere (0.05–1.0 g H2O m-3), but can reside in both phases for the liquid water contents typical of aerosols (10-5-10-4 g H2O m-3).

Henry's law solubility aerosol fluoroacetic acid chloroacetic acid bromoacetic acid difluoroacetic acid dichloroacetic acid dibromoacetic acid trifluoroacetic acid trichloroacetic acid tribromoacetic acid chloro-difluoroacetic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AFEAS (Alternative Fluorocarbons Acceptability Study), 1994: AFEAS Workshop on the Environmental Fate of Trifluoroacetic Acid, Miami Beach, FL.Google Scholar
  2. Bell, R. P. and Kuhn, A. T., 1963: Dissociation constants of some acids in deuterium oxide, Trans. Faraday Soc. 59, 1789–1793.Google Scholar
  3. Bonner, O. D., Jackson, R., and Rogers, O. C., 1962: Determining ionization constants from ion exchange equilibrium measurements, J. Chem. Educ. 39, 37–39.Google Scholar
  4. Bowden, D. J., Clegg, S. L., and Brimblecombe, P., 1996: The Henry's law constant of trifluoroacetic acid and its partitioning into liquid water in the atmosphere, Chemosphere 32, 405–420.Google Scholar
  5. Bowden, D. J., Clegg, S. L., and Brimblecombe, P., 1997: The Henry's law constant of trichloroacetic acid, Water, Air Soil Pollut., in press.Google Scholar
  6. Bowden, K., Hardy, M., and Parkin, D. C., 1968: The transmission of polar effects. Part V. The kinetics of esterification with dazodiphenylmethane and the ionization of substituted acetic and propionic acids in several solvents, Can. J. Chem. 46, 2929–2940.Google Scholar
  7. Brimblecombe, P. and Dawson, G. A., 1984: Wet removal of highly soluble gases, J. Atmos. Chem. 2, 95–107.Google Scholar
  8. Carslaw, K. S., Clegg, S. L., and Brimblecombe, P., 1995: A thermodynamic model of the system HCl–HNO3–H2SO4–H2O, including solubilities of HBr, from 328 K to <200 K, J. Phys. Chem. 99, 11557–11574.Google Scholar
  9. Clegg, S. L. and Brimblecombe, P., 1985: The Henry's law constant of methanesulphonic acid and its implications for atmospheric chemistry, Environ. Technol. Lett. 6, 269–278.Google Scholar
  10. Clegg, S. L. and Brimblecombe, P., 1988: Equilibrium partial pressures of strong acids over concentrated saline solutions. Part I. HNO3, Atmos. Environ. 22, 91–100.Google Scholar
  11. Clegg, S. L., Pitzer, K. S., and Brimblecombe, P., 1992: Thermodynamics of multicomponent, miscible, ionic solutions. II. Mixtures including unsymmetrical electrolytes, J. Phys. Chem. 96, 9470–9479; 1994, 98, 1368; 1995, 99, 6755.Google Scholar
  12. Clegg, S. L. and Whitfield, M., 1991: Activity coefficients in natural waters, in K. S. Pitzer (ed.), Activity Coefficients in Electrolyte Solutions, CRC Press, Boca Raton, FL, Chap. 6.Google Scholar
  13. Crafts, A. S. and Robbins, P., 1962: Weed Control, McGraw–Hill, New York.Google Scholar
  14. Dawson, H. M. and Lowson, W., 1929: Acid and salt effects in catalysed reactions. Part XX. The ionisation of acids in salt solutions, J. Chem. Soc. 1217–1229.Google Scholar
  15. Dean, J. A. and Lange, N. A., 1992: Lange's Handbook of Chemistry, 14th edn, McGraw–Hill, New York.Google Scholar
  16. Dictionary of Organic Compounds, 1982: Vol. 5, Chapman and Hall, London.Google Scholar
  17. Frank, H., Klein, A., and Renschen, D., 1996: Environmental trifluoroacetate, Nature 382, 34.Google Scholar
  18. Frank, H., Renschen, D., Klein, A., and Scholl, H., 1995: Trace analysis of airborne haloacetates, J. High Resol. Chromatogr. 18, 83–88.Google Scholar
  19. Grosselin R. E., Smith R. P., and Hodge N. C., 1984: Clinical Toxicology of Commercial Products, Williams and Wilkins, Baltimore.Google Scholar
  20. Harned, H. S. and Ehlers, R. W., 1933: The dissociation constant of acetic acid from 0° to 60 °C, J. Am. Chem. Soc. 55, 652–656.Google Scholar
  21. Harned, H. S. and Hawkins, J. E., 1928: The catalysis of ethyl formate by mono–chloroacetic acid and ethyl acetate by dichloro–acetic acid in neutral salt solutions, J. Am. Chem. Soc. 50, 85–93.Google Scholar
  22. Hine, J. and Mookerjee, P. K., 1975: The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem. 40, 292–298.Google Scholar
  23. Ives, D. J. G. and Pryor, J. H., 1955: The conductometric evaluation of the ionisation functions of the monohalogenoacetic acids, J. Chem. Soc., 2104–2114.Google Scholar
  24. Juuti, S., Norokorpi, Y., Helle, T., and Ruuskanen, J., 1996: Trichloroacetic acid in conifer needles and arboreal lichens in forest environments, Sci. Total Environ. 180, 117–124.Google Scholar
  25. Kendall, J. and King, C. V., 1925: Additive compounds in the ternary system: Ester – acid – water, J. Chem. Soc., 1778–1791.Google Scholar
  26. Khan, I., Brimblecombe, P., and Clegg, S. L., 1995: Solubilities of pyruvic acid and the lower (c 1c 6) carboxylic acids. Experimental determination of equilibrium vapour pressures above pure aqueous and salt solutions, J. Atmos. Chem. 22, 285–302.Google Scholar
  27. Klotz, I. M. and Rosenberg, R. M., 1972: Chemical Thermodynamics, Basic Theory and Methods, Benjamin/Cummings, Menlo Park, CA.Google Scholar
  28. Kolenbrander, J., 1995: Estimating Physico–Chemical Properties of Organic Compounds Using DESOC, Stanford University Bookstore, Stanford, CA.Google Scholar
  29. Kurz, J. L. and Farrar, J. M., 1969: The entropies of dissociation of some moderately strong acids, J. Am. Chem. Soc. 91, 6057–6062.Google Scholar
  30. Lindstrom, K. and Osterberg, F., 1986: Chlorinated carboxylic acids in softwood Kraft pulp spent bleach liquors, Environ. Sci. Technol. 20, 133–138.Google Scholar
  31. Long, F. A. and McDevit, W. F., 1952: Activity coefficients of nonelectrolyte solutes in aqueous salt solutions, Chem. Rev. 51, 119–169.Google Scholar
  32. Macaskill, J. B. and Bates, R. G., 1983: Osmotic coefficients and activity coefficients of aqueous hydrobromic acid at 25 °C, J. Soln. Chem. 12, 607–619.Google Scholar
  33. McDougall, A. O. and Long, F. A., 1962: Relative hydrogen bonding of deuterium. II. Acid ionization constants in H2O and D2O, J. Phys. Chem. 66, 429–433.Google Scholar
  34. Metzler, D. E., 1977: Biochemistry. The Chemical Reactions of Living Cells, Academic Press, New York.Google Scholar
  35. Meylan, W. H. and Howard, P. H., 1991: Bond contribution method for estimating Henry's law constants, Environ. Toxicol. Chem. 10, 1283–1293.Google Scholar
  36. Miller, J. W. and Uden, P. C., 1983: Characterisation of nonvolatile aqueous chlorination products of humic substances, Environ. Sci. Technol. 17, 150–157.Google Scholar
  37. Pitzer, K. S., 1995: Chemical Thermodynamics, McGraw–Hill, New York.Google Scholar
  38. Pitzer, K. S., 1991: Ion interaction approach: theory and data correlation, in K. S. Pitzer (ed.), Activity Coefficients in Electrolyte Solutions, CRC Press, Boca Raton, FL, Chap. 3.Google Scholar
  39. Plumacher, J. and Renner, I., 1993: Determination of volatile chlorinated hydrocarbons and trichloroacetic acid in conifer needles by headspace gas chromatography, Fresenius J. Anal. Chem. 347, 129–135.Google Scholar
  40. Randall, M. and Failey, C. F., 1927: Activity coefficients of the undissociated part of weak electrolytes, Chem. Rev. 4, 291–318.Google Scholar
  41. Reimann, S., Grob, K. and Frank, H., 1996: Chloroacetic acids in rainwater, Environ. Sci. Technol. 30, 2340–2344.Google Scholar
  42. Rodriguez, J. M., Ko, M. K. W., Sze, N. D., and Heisey, C. W., 1993: Two–dimensional assessment of the degradation of HFC–134a: tropospheric accumulations and deposition of trifluoroacetic acid, in Kinetics and Mechanisms for the Reactions of Halogenated Organic Compounds in the Troposphere, STEP–HALOCSIDE/AFEAS Workshop, pp. 104–112.Google Scholar
  43. Russell, C. J., Dixon, S. L., and Jurs, P. C., 1992: Computer assisted study of the relationship between molecular structure and Henry's law constant, Anal. Chem. 64, 1350–1355.Google Scholar
  44. Saxena, P. and Hildemann, L. M., 1996: Water–soluble organics in atmospheric particle – a critical review of the literature and application of thermodynamics to identify candidate compounds, J. Atmos. Chem. 24, 57–109.Google Scholar
  45. Saxton, B. and Langer, T.W., 1933: The ionization constant of monochloroacetic acid, at 25 °C, from conductance measurements, J. Am. Chem. Soc. 55, 3638–3645.Google Scholar
  46. Shmidt, L. L., 1960: Total and partial vapour pressure of chloroacetic acid solutions in water, Tr. Talinsk. Politekhn. Inst. Ser. A, 221–244.Google Scholar
  47. Staudinger, J. and Roberts, P. V., 1996: A critical review of Henry's law constants for environmental applications, Crit. Rev. Environ. Sci. Technol. 26, 205–297.Google Scholar
  48. Suzuki, T., Ohtaguchi, K., and Koide, K., 1992: Application of principal components analysis to calculate Henry's constant from molecular structure, Computers Chem. 16, 41–52.Google Scholar
  49. Tromp, T. K., Ko, M. K. W., Rodriguez, J. M., and Sze, N. D., 1995: Potential accumulation of CFC–replacement degradation product in seasonal wetlands, Nature 376, 327–330.Google Scholar
  50. Tromp, T. K., Rodriguez, J. M., Ko, M. K. W., Heisey, C. W., and Sze, N. D., 1994: Scenarios for delivery of TFA to the global environment: model predictions of environmental load, in AFEAS Workshop on the Environmental Fate of Trifluoroacteic Acid, Miami Beach, FL.Google Scholar
  51. Weast R. C., 1988: CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FLGoogle Scholar
  52. Williams, D. T., Le Bel, G. L., and Benoit, F.M., 1997: Disinfection by–products in Canadian drinking water, Chemosphere 34, 299–316.Google Scholar
  53. Wine, P. H. and Chameides, W. I., 1989: Possible atmospheric lifetimes and chemical reaction mechanisms for selected HCFCs, HFCs, CH3CCl and their degradation products against dissolution and/or degradation in seawater and cloud water, in Scientific Assessment of Stratospheric Ozone: 1989, WMO Global Ozone Research and Monitoring Project, Report No. 20, Vol. II, pp. 273–298.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • D. J. Bowden
    • 1
  • S. L. Clegg
    • 1
  • P. Brimblecombe
    • 1
  1. 1.School of Environmental SciencesUniversity of East AngliaNorwichU.K.

Personalised recommendations