Acta Applicandae Mathematica

, Volume 50, Issue 1–2, pp 167–175 | Cite as

Embedding of Lie Algebras in Isogeneralized Structurable Algebras

  • Noriaki Kamiya
  • Ruggero Maria Santilli


In a previous paper, the first-named author introduced generalized structurable algebras, while the second-named author introduced the isotopies of Lie algebras. In this paper, we combine the two analyses, submit the notion of isogeneralized structural algebras, and show that they include Lie algebras, all their axiom-preserving generalizations of graded, supersymmetric or isotopic type, as well as numerous other algebras.

Lie algebras generalized structurable algebras isotopies of Lie algebras isogeneralized structural algebras 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jacobson, N.: Lie Algebras, Wiley, New York, 1962.Google Scholar
  2. 2.
    Kamiya, N.: On a generalization of structurable algebras, Algebras, Groups Geom. 9 (1992), 35-47.Google Scholar
  3. 3.
    Santilli, R. M.: Isotopies of contemporary mathematical structures, I: Isotopies of fields, vector spaces, transformation theory, Lie algebras, analytic mechanics and space-time symmetries, Algebras, Groups Geom. 8 (1991), 169-266.Google Scholar
  4. 4.
    Santilli, R. M.: Isotopies of contemporary mathematical structures, II: Isotopies of symplectic geometry, affine geometry, Riemannian geometry and Einstein's gravitation, Algebras, Groups Geom. 8 (1991), 275-390.Google Scholar
  5. 5.
    Albert, A. A.: Power-associative rings, Trans. Amer. Math. Soc. 64 (1948), 552-593.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Noriaki Kamiya
    • 1
  • Ruggero Maria Santilli
    • 2
  1. 1.Department of MathematicsShimane UniversityMatsueJapan
  2. 2.Division of MathematicsThe Institute for Basic ResearchPalm HarborU.S.A

Personalised recommendations