Acta Applicandae Mathematica

, Volume 51, Issue 2, pp 161–213 | Cite as

Moving Coframes: I. A Practical Algorithm

  • Mark Fels
  • Peter J. Olver
Article

Abstract

This is the first in a series of papers devoted to the development and applications of a new general theory of moving frames. In this paper, we formulate a practical and easy to implement explicit method to compute moving frames, invariant differential forms, differential invariants and invariant differential operators, and solve general equivalence problems for both finite-dimensional Lie group actions and infinite Lie pseudo-groups. A wide variety of applications, ranging from differential equations to differential geometry to computer vision are presented. The theoretical justifications for the moving coframe algorithm will appear in the next paper in this series.

moving frame differential invariant Lie group Lie pseudogroup equivalence symmetry computer vision 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackerman, M. and Hermann, R.: Sophus Lie’s 1884 Differential Invariant Paper, Math. Sci. Press, Brookline, Mass., 1976.Google Scholar
  2. 2.
    Anderson, I. M.: Introduction to the variational bicomplex, Contemp. Math. 132(1992), 51-73.Google Scholar
  3. 3.
    Bryant, R. L., Chern, S.-S., Gardner, R. B., Goldschmidt, H. L. and Griffiths, P. A.: Exterior Differential Systems, Math. Sci. Res. Inst. Publ. 18, Springer-Verlag, New York, 1991.Google Scholar
  4. 4.
    Buchberger, B.: Applications of Gröbner bases in nonlinear computational geometry, in: J. R. Rice (ed.), Mathematical Aspects of Scientific Software, IMA Vol. in Math. Appl. 14, Springer-Verlag, New York, 1988, pp. 59-87.Google Scholar
  5. 5.
    Calabi, E., Olver, P. J., Shakiban, C., Tannenbaum, A. and Haker, S.: Differential and numerically invariant signature curves applied to object recognition, Internat. J. Computer Vision, to appear.Google Scholar
  6. 6.
    Cartan, É.: La méthode du repère mobile, la théorie des groupes continus, et les espaces généralisés, Exposés de géométrie No. 5, Hermann, Paris, 1935.Google Scholar
  7. 7.
    Cartan, É.: LeÇons sur la théorie des espaces à connexion projective, Cahiers scientifiques, 17, Gauthier-Villars, Paris, 1937.Google Scholar
  8. 8.
    Cartan, É.: La théorie des groupes finis et continus et la géométrie différentielle traitées par la méthode du repère mobile, Cahiers scientifiques 18, Gauthier-Villars, Paris, 1937.Google Scholar
  9. 9.
    Cartan, É.: Les systèmes différentiels extérieurs et leurs applications géométriques, Exposés de géométrie 14, Hermann, Paris, 1945.Google Scholar
  10. 10.
    Cartan, é.: Sur la structure des groupes infinis de transformations, in Oeuvres complètes, Part. II, Vol. 2, Gauthier-Villars, Paris, 1953, pp. 571-624.Google Scholar
  11. 11.
    Cartan, É.: Les problèmes d’équivalence, in Oeuvres complètes, Part. II, Vol. 2, Gauthier-Villars, Paris, 1953 pp. 1311-1334.Google Scholar
  12. 12.
    Chern, S.-S.: Moving frames, in Élie Cartan et les mathématiques d’aujourd’hui, Soc. Math. France, Astérisque, numéro hors série, 1985, pp. 67-77.Google Scholar
  13. 13.
    Faugeras, O.: Cartan’s moving frame method and its application to the geometry and evolution of curves in the euclidean, affine and projective planes, in: J. L. Mundy, A. Zisserman, D. Forsyth (eds), Applications of Invariance in Computer Vision, Lecture Notes in Computer Sci. 825, Springer-Verlag, New York, 1994, pp. 11-46.Google Scholar
  14. 14.
    Fels, M. and Olver, P. J.: On relative invariants, Math. Ann. 308(1997), 701-732.Google Scholar
  15. 15.
    Fels, M. and Olver, P. J.: Moving coframes, II. Regularization and theoretical foundations, Acta Appl. Math., to appear.Google Scholar
  16. 16.
    Gardner, R. B.: The Method of Equivalence and Its Applications, SIAM, Philadelphia, 1989.Google Scholar
  17. 17.
    Green, M. L.: The moving frame, differential invariants and rigidity theorems for curves in homogeneous spaces, Duke Math. J. 45(1978), 735-779.Google Scholar
  18. 18.
    Griffiths, P. A.: On Cartan’s method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry, Duke Math. J. 41(1974), 775-814.Google Scholar
  19. 19.
    Guggenheimer, H. W.: Differential Geometry, McGraw-Hill, New York, 1963.Google Scholar
  20. 20.
    Heredero, R. H. and Olver, P. J.: Classification of invariant wave equations, J. Math. Phys. 37(1996), 6414-6438.Google Scholar
  21. 21.
    Hille, E.: Ordinary Differential Equations in the Complex Domain, Wiley, New York, 1976.Google Scholar
  22. 22.
    Hsu, L. and Kamran, N.: Classification of second-order ordinary differential equations admitting Lie groups of fiber-preserving symmetries, Proc. London Math. Soc. 58(1989), 387-416.Google Scholar
  23. 23.
    Jensen, G. R.: Higher Order Contact of Submanifolds of Homogeneous Spaces, Lecture Notes in Math. 610, Springer-Verlag, New York, 1977.Google Scholar
  24. 24.
    Kamran, N.: Contributions to the study of the equivalence problem of Elie Cartan and its applications to partial and ordinary differential equations, Mém. Cl. Sci. Acad. Roy. Belg. 45(1989), Fac. 7.Google Scholar
  25. 25.
    Kamran, N. and Olver, P. J.: Equivalence problems for first order Lagrangians on the line, J. Differential Equations 80(1989), 32-78.Google Scholar
  26. 26.
    Kobayashi, S.: Canonical forms on frame bundles of higher order contact, Proc. Sympos. Pure Math. 3(1961), 186-193.Google Scholar
  27. 27.
    Kumpera, A.: Invariants différentiels d’un pseudogroupe de Lie, J. Differential Geom. 10(1975), 289-416.Google Scholar
  28. 28.
    Lie, S.: Über unendlichen kontinuierliche Gruppen, Christ. Forh. Aar. 8(1883), 1-47; also Gesammelte Abhandlungen, Vol. 5, B. G. Teubner, Leipzig, 1924, pp. 314-360.Google Scholar
  29. 29.
    Lie, S.: Über Differentialinvarianten, Math. Ann. 24(1884), 537-578; also Gesammelte Abhandlungen, Vol. 6, B. G. Teubner, Leipzig, 1927, pp. 95-138; see [1] for an English translation.Google Scholar
  30. 30.
    Lie, S.: Die Grundlagen für die Theorie der unendlichen kontinuierlichen Transformationsgruppen, Leipzig. Ber. 43(1891), 316-393; also Gesammelte Abhandlungen, Vol. 6, B. G. Teubner, Leipzig, 1927, pp. 300-364.Google Scholar
  31. 31.
    Lie, S.: Zur allgemeinen Theorie der partiellen Differentialgleichungen beliebeger Ordnung, Leipz. Berich. 47(1895), 53-128; also Gesammelte Abhandlungen, Vol. 4, B. G. Teubner, Leipzig, 1929, pp. 320-384.Google Scholar
  32. 32.
    Lie, S.: Gruppenregister, in Gesammelte Abhandlungen, Vol. 5, B. G. Teubner, Leipzig, 1924, pp. 767-773.Google Scholar
  33. 33.
    Lisle, I.: Equivalence transformations for classes of differential equations, PhD Thesis, University of British Columbia, Vancouver, 1992.Google Scholar
  34. 34.
    Medolaghi, P.: Classificazione delle equazioni alle derivate parziali del secondo ordine, che ammettono un gruppo infinito di trasformazioni puntuali, Ann. Mat. Pura Appl. 1(3) (1898), 229-263.Google Scholar
  35. 35.
    Moons, T., Pauwels, E., Van Gool, L. and Oosterlinck, A.: Foundations of semi-differential invariants, Internat. J. Comput. Vision 14(1995), 25-48.Google Scholar
  36. 36.
    Olver, P. J.: Classical invariant theory and the equivalence problem for particle Lagrangians. I. Binary Forms, Adv. in Math. 80(1990), 39-77.Google Scholar
  37. 37.
    Olver, P. J.: Applications of Lie Groups to Differential Equations, 2nd edn, Graduate Texts in Math. 107, Springer-Verlag, New York, 1993.Google Scholar
  38. 38.
    Olver, P. J.: Equivalence, Invariants, and Symmetry, Cambridge University Press, Cambridge, 1995.Google Scholar
  39. 39.
    Olver, P. J.: Pseudo-stabilization of prolonged group actions. I. The order zero case, Nonlinear Math. Phys. 4(1997), 99-136.Google Scholar
  40. 40.
    Olver, P. J., Sapiro, G. and Tannenbaum, A.: Invariant geometric evolutions of surfaces and volumetric smoothing, SIAM J. Appl. Math. 57(1997), 176-194.Google Scholar
  41. 41.
    Ovsiannikov, L. V.: Group Analysis of Differential Equations, Academic Press, New York, 1982.Google Scholar
  42. 42.
    Robart, T. and Kamran, N.: Sur la théorie locale des pseudogroupes de transformations continus infinis I, Math. Ann. 308(1997), 593-613.Google Scholar
  43. 43.
    Singer, I. M. and Sternberg, S.: The infinite groups of Lie and Cartan. Part I (the transitive groups), J. Anal. Math. 15(1965), 1-114.Google Scholar
  44. 44.
    Sternberg, S.: Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, N.J., 1964.Google Scholar
  45. 45.
    Tresse, A.: Sur les invariants différentiels des groupes continus de transformations, Acta Math. 18(1894), 1-88.Google Scholar
  46. 46.
    Vessiot, E.: Sur l’intégration des systèmes différentiels qui admettent des groupes continues de transformations. Acta Math. 28(1904), 307-349.Google Scholar
  47. 47.
    Weyl, H.: Cartan on groups and differential geometry, Bull. Amer. Math. Soc. 44(1938), 598-601.Google Scholar
  48. 48.
    Weyl, H.: Classical Groups, Princeton Univ. Press, Princeton, N.J., 1946.Google Scholar
  49. 49.
    Wilczynski, E. J.: Projective Differential Geometry of Curves and Ruled Surfaces, B. G. Teubner, Leipzig, 1906.Google Scholar
  50. 50.
    Willmore, T. J.: Riemannian Geometry, Oxford University Press, Oxford, 1993.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Mark Fels
  • Peter J. Olver

There are no affiliations available

Personalised recommendations