Plant Molecular Biology

, Volume 35, Issue 6, pp 701–709 | Cite as

Induction of a ribosome-inactivating protein upon environmental stress

  • Joerg F. Rippmann
  • Christine B. Michalowski
  • Donald E. Nelson
  • Hans J. Bohnert

Abstract

Transcripts of altered abundance in RNA from unstressed and 500 mm salt-shocked Mesembryanthemum crystallinum (common ice plant) were detected by reverse-transcription differential display (RT-DD). One transcript, Rip1, was of very low abundance in unstressed plants and was strongly induced by stress. RNA blot hybridizations showed strong induction and a diurnal rhythm of transcript abundance with a maximum each day around the middle of the light phase. Rip1 encodes a reading frame of 289 amino acids (molecular mass 32652), RIP1, with homology to single-chain ribosome inactivating proteins (rRNA N-glycosidases). The deduced amino acid sequence is 31.7% identical to pokeweed antiviral protein RIP-C (overall similarity 66.5%) with highest identity in domains of documented functional importance. RT-DD also detected mRNA for pyruvate,orthophosphate dikinase (PPDK) which has already been shown to be stress-induced in the ice plant [16]. RIP1, expressed in Escherichia coli, showed rRNA N-glycosidase activity against ice plant and rabbit reticulocyte ribosomes. The induction of Rip1 coincides with the transition period during which global changes in translation lead to adaptation of the ice plant to salt stress.

Mesembryanthemum crystallinum salt stress reverse transcription differential display ribosome-inactivating protein diurnal expression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams P, Thomas JC, Vernon DM, Bohnert HJ, Jensen RG: Distinct Cellular and Organismic Responses to Salt Stress. Plant Cell Physiol 33(8): 1215–23 (1992).Google Scholar
  2. 2.
    Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K: Current Protocols in Molecular Biology. Wiley, New York (1988).Google Scholar
  3. 3.
    Barbieri L, Bolognesi A, Cenini P, Falasca AI, Minghetti A, Garofano L, Guicciardi A, Lappi D, Miller SP, Stirpe F: Ribosome-inactivating proteins from plant cells in culture. Biochem J 257: 801–807 (1989).Google Scholar
  4. 4.
    Barbieri L, Battelli MG, Stirpe F: Ribosome-inactivating proteins from plants. Biochim Biophys Acta 1154: 237–282 (1993).Google Scholar
  5. 5.
    Barkla BJ, Zingarelli L, Blumwald E, Smith JAC: Tonoplast Na+/H+ antiport activity and its energization by the vacuolar H+-ATPase in the halophytic plant Mesembryanthemum crystallinum L. Plant Physiol 109: 549–556 (1995).Google Scholar
  6. 6.
    Bohnert HJ, DeRocher EJ, Michalowski CB, Jensen RG: In: Bansal KC (ed) Recent Advances in Plant Molecular Biology, IBH Publishers, New Delhi, India, in press (1997).Google Scholar
  7. 7.
    Bohnert HJ, Ishitani M, Kamasani UR, Katsuhara m, Majumder AL, Nelson DE, Rammesmayer G, Sheveleva E, Yamada S, Jensen RG: Biochemical mechanisms of Mesembryanthemum crystallinum for salinity stress tolerance. In: Mathis P (ed) Photosynthesis: from Light to Biosphere, vol 4, Kluwer Academic Publishers, Dordrecht, Netherlands (1995).Google Scholar
  8. 8.
    Bohnert HJ, RG Jensen: Metabolic engineering for increased salt tolerance – the next step. Aust J Plant Physiol 23: 661–667 (1996).Google Scholar
  9. 9.
    Bonness MS, Ready MP, Irvin JD, Mabry TJ: Pokeweed antiviral protein inactivates pokeweed ribosomes: implications for the antiviral mechanism. Plant J 5: 173–183 (1994).Google Scholar
  10. 10.
    Breiteneder H, Michalowski CB, Bohnert HJ: Environmental stress-mediated differential 3′ end formation of chloroplast RNA-binding protein transcripts. Plant Mol Biol 26: 833–849 (1994).Google Scholar
  11. 11.
    Cushman JC, Meyer G, Michalowski CB, Schmitt JM, Bohnert HJ: Salt-stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during Crassulacean acid metabolism induction in the common ice plant. Plant Cell 1: 715–25 (1989).Google Scholar
  12. 12.
    Cushman JC, Michalowski CB, Bohnert HJ: Developmental control of CAM inducibility by salt stress in the common ice plant. Plant Physiol 94: 1137–1142 (1990).Google Scholar
  13. 13.
    Cushman JC, Bohnert HJ: Molecular genetics of Crassulacean acid metabolism. Plant Physiol 113: 667–676.Google Scholar
  14. 14.
    DeRocher EJ, Bohnert HJ: Development and environmental stress employ different mechanisms in expression control of a plant gene family. Plant Cell 5: 1611–1625 (1993).Google Scholar
  15. 15.
    Farrell RE: RNA methodologies, a laboratory guide for isolation and characterization. Academic Press, San Diego, CA (1993).Google Scholar
  16. 16.
    Fisslthaler B, Meyer G, Bohnert HJ, Schmitt JM: Age-dependent induction of pyruvate, orthophosphate dikinase in Mesembryanthemum crystallinum L. Planta 196: 492–500 (1995).Google Scholar
  17. 17.
    Girbes T, de Torre C, Iglesias R, Ferreras JM, Mendez E: RIP for viruses. Nature 379: 777–778 (1996).Google Scholar
  18. 18.
    Guimaraes MJ, Lee F, Zlotnik A, McClanahan T: Differential display by PCR: novel findings and applications. Nucl Acids Res 23: 1832–1833 (1995).Google Scholar
  19. 19.
    Hartley MR, Chaddock JA, Bonness MS: The structure and function of ribosome-inactivating proteins. Trends Plant Sci 1: 254–260 (1996).Google Scholar
  20. 20.
    Heck GR, Perry SE, Nichols KW, Fernandez DE: AGL15, a MADS domain protein expressed in developing embryos. Plant Cell 7: 1271–1282 (1995).Google Scholar
  21. 21.
    Hell RR, Schuster GG, Gruissem WW: An O-acetylserine(-thiol) lyase cDNA from spinach. Plant Physiol 102: 1057–1058 (1993).Google Scholar
  22. 22.
    Hfner R, Vazquez-Moreno L, Winter K, Bohnert HJ, Schmitt JM: Induction of Crassulacean acid metabolism in Mesembryanthemum crystallium by high salinity: mass increase and denovo synthesis of PEP-carboxylase. Plant Physiol 83: 915–919 (1987).Google Scholar
  23. 23.
    Hong Y, Saunders K, Hartley MR, Stanley J: Resistance to geminivirus infection by virus-induced expression of dianthin in transgenic plants. Virology 220: 119–127 (1996).Google Scholar
  24. 24.
    Hornung E, Wajant H, Jeske H, Mundry KW: Cloning of a cDNA encoding a newribosome-inactivating protein from Beta vulgaris vulgaris (mangold) Gene 170: 233–236 (1996).Google Scholar
  25. 25.
    Irvin JD, Bobertus JD, Monzingo AF: Preliminary X-ray diffraction studies on an anti-viral protein. Biochim Biophys Res Commun 74: 775–779 (1977).Google Scholar
  26. 26.
    Ishitani M, Majumder AL, Bornhouser A, Michalowski CB, Jensen RG, Bohnert HJ: Coordinate transcriptional induction of myo-inositol metabolism during environmental stress. Plant J 9: 537–548 (1996).Google Scholar
  27. 27.
    Jach G, Gornhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J, Mass C: Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J 8: 97–109 (1995).Google Scholar
  28. 28.
    Lamb CJ, Ryals JA, Ward ER, Dixon RA: Emerging strategies for enhancing crop resistance to microbial pathogens. Bio/technology 10: 1436–1445 (1992).Google Scholar
  29. 29.
    Leah R, Tommerup H, Svendsen I, Mundy J: Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem 226: 1546–1553 (1991).Google Scholar
  30. 30.
    Legname G, Gromo G, Lord JM, Monzini N, Modena D: Expression and activity of pre-dianthin 30 and dianthin 32. Biochem Biophys Res Commun 192: 1230–1237 (1993).Google Scholar
  31. 31.
    Liang P, Averboukh L, Keyomarsi K, Sager R, Pardee AB: Differential display and cloning of mRNAs from human breast cancer versus mammary epithelial cells. Cancer Res 52: 6966– 6968 (1992).Google Scholar
  32. 32.
    Liang P, Zhu W, Zhang X, Guo Z, O'Connell RP, Averboukh L, Wang F, Pardee AB: Differential display using one-base anchored oligo-dT primers. Nucl Acids Res 22: 5763–5764 (1994).Google Scholar
  33. 33.
    Liu LZ, Shearn A: Rapid PCR for RNA differential display in a conventional heat block thermal cycler. Biotechniques 19: 44–46 (1995).Google Scholar
  34. 34.
    Logemann J, Jach G, Tommerup H, Mundy J, Schell J: Expression of a barley ribosome-inactivating protein leads to increased fungal protection in transgenic tobacco plants. Bio Technology 10: 305–308 (1992).Google Scholar
  35. 35.
    Massiah AJ, Hartley MR: Wheat ribosome inactivating proteins: Seed and leaf forms with different specificities and cofactor requirements. Planta 197: 633–640 (1995).Google Scholar
  36. 36.
    Michalowski CB, DeRocher EJ, Bohnert HJ, Salvucci ME: Phosphoribulokinase from ice plant: transcription, transcripts, and protein expression during environmental stress. Photosyn Res 31: 127–138 (1992).Google Scholar
  37. 37.
    Mou L, Miller H, Li J, Wang E, Chalifour L: Improvements to the differential display method for gene analysis. Biochem Biophys Res Commun 199: 564–569 (1994).Google Scholar
  38. 38.
    Ostrem JA, Olson SW, Schmitt JM, Bohnert HJ: Salt stress increases the level of translatable mRNA for phosphoenolpy-ruvate carboxylase in Mesembryanthemum crystallinum. Plant Physiol 84: 1270–1275 (1987).Google Scholar
  39. 39.
    Paul MJ, Cockburn W: Pinitol a compatible solute in Mesembryanthemum crystallinum L. J Exp Bot 40: 1093–1098 (1989).Google Scholar
  40. 40.
    Poyet JL, Radom J, Hoeveler A: Isolation and characterization of a cDNA clone encoding the pokeweed antiviral protein II from Phytolacca americana and its expression in E. coli. FEBS Lett 347: 268–272 (1994).Google Scholar
  41. 41.
    Reinbothe S, Reinbothe C, Parthier B: Methyl jasmonate represses translation initiation of a specific set of mRNAs in barley. Plant J 4: 459–467 (1993).Google Scholar
  42. 42.
    Reinbothe S, Mollenhauer B, Reinbothe C: JIPs and RIPs: the regulation of plant gene expression by jasmonates in response to environmental cues and pathogens. Plant Cell 6: 1197–1209 (1994).Google Scholar
  43. 43.
    Singh NK, Bracker CA, Hasegawa PM, Handa AK, Buckel S, Hermodson MA, Pfankock E, Regnier FE, Bressan RA: Characterization of osmotin. Plant Physiol. 85: 529–536 (1987).Google Scholar
  44. 44.
    Stirpe F, Barbieri L, Gorini P, Valbonesi P, Bolognesi A, Polito L: Activities associated with the presence of ribosome-inactivating proteins increase in senescent and stressed leaves. FEBS Lett 382: 309–312 (1996).Google Scholar
  45. 45.
    Tsiantis MS, Bartholomew DM, Smith JAC: Salt regulation of transcript levels for the 16 kDa subunit of a leaf vacuolar H+-ATPase in the halophyte Mesembryanthemum crystallinum. Plant J 9(5): 729–736 (1996).Google Scholar
  46. 46.
    Vernon DM, Bohnert HJ: Increased expression of a myoinositol methyl transferase in Mesembryanthemum crystallinum is part of a stress response distinct from CAM induction. Plant Physiol 99: 1695–1698 (1992).Google Scholar
  47. 47.
    Winter KA, von Willert, DJ: NaCl-induzierter Crassulaceensaurestoffwechsel bei Mesembryanthemum crystallinum. Z. Pflanzenphysiol 67: 166–170 (1972).Google Scholar
  48. 48.
    Woloshuk CP, Meulenhoff JS, Sela-Buurlage M, van den Elzen PJ, Cornelissen BJ: Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. Plant Cell 3: 619–628 (1991).Google Scholar
  49. 49.
    Yamada S, Katsuhara M, Kelly WB, Michalowski CB, Bohnert HJ: A family of transcripts encoding water channel proteins: tissue-specific expression in the common ice plant. Plant Cell 7: 1129–1142 (1995).Google Scholar
  50. 50.
    Zhao S, Ooi SL, Pardee AB: New primer stragegy improves precision of differential display. BioTechniques 18: 842–846 (1995).Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Joerg F. Rippmann
    • 1
    • 2
  • Christine B. Michalowski
    • 1
  • Donald E. Nelson
    • 1
  • Hans J. Bohnert
    • 3
    • 4
    • 5
  1. 1.Department of BiochemistryUniversity of ArizonaTucsonUSA
  2. 2.Institut für Industrielle GenetikUniversität StuttgartStuttgartGermany
  3. 3.Department of BiochemistryUSA
  4. 4.Plant SciencesUSA
  5. 5.Molecular and Cellular BiologyUniversity of ArizonaTucsonUSA

Personalised recommendations