Journal of Atmospheric Chemistry

, Volume 29, Issue 1, pp 17–43 | Cite as

On the Exchange of NO3 Radicals with Aqueous Solutions: Solubility and Sticking Coefficient

  • Karin Thomas
  • Andreas Volz-Thomas
  • Djuro Mihelcic
  • Herman G. J. Smit
  • Dieter Kley


The exchange of NO3 radicals with the aqueous-phase was investigated at room temperature (293 K) in a series of wetted denuders. From these experiments, the uptake coefficient of NO3 was determined on 0.1 M NaCl solutions and was found to be γ(NO3) ≥ 2 × 10-3 in good agreement with recent studies. The Henry coefficient of NO3 was estimated to be KH(NO3) = 1.8 M · atm-1, with a (2σ) uncertainty of ±3 M · atm-1. From the upper limit for the Henry coefficient (KH = 5 M · atm-1) and available thermodynamic data, the redox potential of dissolved NO3/NO 3 is estimated to be in the range of 2.3 to 2.5 V. This range is at the lower boundary of earlier estimates. The results are discussed in the light of a recent publication. Based on our data and a model of the transport and chemistry in the liquid film, an upper limit is derived for the product of the Henry coefficient KH and the rate coefficient k10 of the potential reaction NO3 + H2O → HNO3 + OH. For KH = 0.6 M · atm-1, we find k10 < 0.05 s-1 · atm-1, i.e., about 100 times smaller than what was suggested by Rudich and co-workers. Because of its small solubility, heterogeneous removal of NO3 is only important under conditions where the dissolved NO3 is removed quickly from equilibrium, for example by reactions with Cl or HSO 3 ions in the liquid-phase. Otherwise, heterogenous removal should mainly proceed via N2O5.

nitrate radical solubility sticking coefficient redox potential heterogeneous removal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benner, C. L., Eatough, N. L., Lewis, E. A., Eatough, D. J., Huang, A. A., and Ellis, E. C., 1988: Diffusion coefficients for ambient nitric and nitrous acids from denuder experiments in the 1985 nitrogen species methods comparison study, Atmos. Environ. 22, 1669–1672.Google Scholar
  2. Berdnikov, V. M. and Bazhin, N. M., 1970: Oxidation–reduction potentials of certain inorganic radicals in aqueous solutions, Russian J. Phys. Chem. 44, 395–398.Google Scholar
  3. Braman, R. S., Sheeley, T. J., and McClenney, W. A., 1982: Tungstic acid for preconcentration and determination of gaseous and particulate ammonia and nitric acid in ambient air, Anal. Chem. 54, 358–364.Google Scholar
  4. Chameides, W. L., 1984: The photochemistry of a remote marine stratiform cloud, J. Geophys. Res. 89, 4739–4755.Google Scholar
  5. Chameides, W. L., 1986a: Possible role of NO3 in the nighttime chemistry of a cloud, J. Geophys. Res. 91, 5331–5337.Google Scholar
  6. Chameides, W. L., 1986b: Reply, J. Geophys. Res. 91, 14571–14572.Google Scholar
  7. Cooney, D. O., Kim, S.–S., Davis, E. J., 1974: Analysis of mass transfer in hemodialyzers for laminar blood flow and homogeneous dialysate, Chem. Eng. Sci. 29, 1731–1738.Google Scholar
  8. Curtis, A. R. and Sweetenham, W. P., 1985: FACSIMILE release H user's manual, AERE R 11771, Harwell Laboratory, Oxfordshire, U. K.Google Scholar
  9. Danckwerts, P. V., 1970: Gas–Liquid Reactions, McGraw Hill, New York.Google Scholar
  10. Durham, J. L. and Spiller, L. L., 1982: Measurement of Gaseous, Volatile, and Non–Volatile Inorganic Nitrate in Riverside, California, Proc. Div. Envir. Chem., 184th National ACS Meeting, Kansas City, Missouri.Google Scholar
  11. Durham, J. L. and Stockburger, L., 1986: Nitric acid–air diffusion coefficient: experimental determination, Atmos. Environ. 20, 559–563.Google Scholar
  12. Eatough, D. J., White, V. F., Hansen, L. D., Eatough, N. L., and Ellis, E. C., 1985: Hydration of nitric acid and its collection in the atmosphere by diffusion denuders, Anal. Chem. 57, 743–748.Google Scholar
  13. Eberson, L., 1982: Electron–transfer reactions in organic chemistry, Adv. Phys. Org. Chem. 18, 79–85.Google Scholar
  14. Exner, M., Herrmann, H., and Zellner, R., 1992: Laser–based studies of reactions of the nitrate radical in aqueous solution, Ber. Bunsenges. Phys. Chem. 96, 470–477.Google Scholar
  15. Ferm, M., 1986: A N2CO3–coated denuder and filter for determination of gaseous HNO3 and particulate NO3 in the atmosphere, Atmos. Environ. 20, 1193–1201.Google Scholar
  16. Graedel, T. E., Mandich, M. L., and Weschler, C. J., 1986: Kinetic model studies of atmospheric droplet chemistry, 2. Homogeneous transition metal chemistry in raindrops, J. Geophys. Res. 91, 5205–5221.Google Scholar
  17. Hanson, D. R. and Ravishankara, A. R., 1991: The reaction probabilities of ClONO2 and N2O5 on 40 to 75% sulfuric acid solutions, J. Geophys. Res. 96, 17307–17314.Google Scholar
  18. Heikes, B. G. and Thompson, A. M., 1983: Effects of heterogeneous processes on NO3, HONO, and HNO3 chemistry in the troposphere, J. Geophys. Res. 88, 10883–10895.Google Scholar
  19. Heikes, B. G. and Thompson, A. M., 1984: Correction to ‘Effects of heterogeneous processes on NO3, HONO, and HNO3 chemistry in the troposphere’, J. Geophys. Res. 89, 11829.Google Scholar
  20. Heintz, F., Platt, U., Flentje, H., and Dubois, R., 1996: Long–term observation of nitrate radicals at the TOR station, Kap Arkona (Rügen), J. Geophys. Res. 101, 22891–22910.Google Scholar
  21. Huie, R. E. and Neta, P., 1984: Chemical behavior of SO3 and SO5 radicals in aqueous solutions, J. Phys. Chem. 88, 5665–5669.Google Scholar
  22. Jacob, D. J., 1986: Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate, J. Geophys. Res. 91, 9807–9826.Google Scholar
  23. JANAF, 1971: Thermochemical Tables, 2nd edn., NSRDS–NBS 37, Washington, DC.Google Scholar
  24. Kirchner, W., Welter, F., Bongartz, A., Kames, J., Schweighoefer, S., and Schurath, U., 1990: Trace gas exchange at the air/water interface: measurements of mass accommodation coefficients, J. Atmos. Chem. 10, 427–449.Google Scholar
  25. Kläning, U. K., Sehested, K., and Holcman, J., 1985: Standard Gibbs energy of the hydroxyl radical in aqueous solution. Rate constants for the reaction ClO2 +O3 → O3 + ClO2, J. pLhys. Chem. 89, 760–763.Google Scholar
  26. Kozak–Channing, L. F. and Heltz, G. R., 1983: Solubility of ozone in aqueous solutions of 0–0. 6 M ionic strength at 5–30 °C, Environ. Sci. Technol. 17, 145–149.Google Scholar
  27. Latimer, W. M., 1952: The Oxidation States of the Elements and Their Potentials in Aqueous Solutions, 2nd ed., Prentice–Hall, New–York, p. 45.Google Scholar
  28. Lazrus, A. L., Kok, G. L., Lind, J. A., Gitlin, S. N., Heikes, B. G., and Shetter, R. E., 1986: Automated fluorometric method for hydrogen peroxide in air, Anal. Chem. 58, 594–597.Google Scholar
  29. Leaitch, W. R., Bottenheim, J. W., and Strapp, J. W., 1988: Possible contribution of N2O5 scavening to HNO3 observed in winter stratiform cloud, J. Geophys. Res. 93, 12569–12584.Google Scholar
  30. Lee, Y. N. and Schwartz, S. E., 1981: Reaction kinetics of nitrogen dioxide with liquid water at low partial pressure, J. Phys. Chem. 85, 840–848.Google Scholar
  31. Lind, J. A. and Kok, G. L., 1986: Henry's law determinations for aqueous solutions of hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid, J. Geophys. Res. 91, 7889–7895.Google Scholar
  32. Meixner, F. X., Müuller, K. P., Aheimer, G., and Höfgen, K. D., 1985: Measurements of Gaseous Nitric Acid and Particulate Nitrate, Proc. COST 611 Meeting, Bilthoven, NL, 23–25 Sept.Google Scholar
  33. Mertes, S. and Wahner, A., 1995: Uptake of nitrogen dioxide and nitrous acid on aqueous surfaces, J. Phys. Chem. 99, 14000–14006.Google Scholar
  34. Mihelcic, D., Volz–Thomas, A., Pätz, H. W., Kley, D., and Mihelcic, M., 1990: Numerical analysis of ESR spectra from atmospheric samples, J. Atmos. Chem. 11, 271–297.Google Scholar
  35. Mihelcic, D., Klemp, D., Müsgen, P., Pätz, H. W., and Volz–Thomas, A., 1993: Simultaneous mea–surements of peroxy and nitrate radicals at Schauinsland, J. Atmos. Chem. 16, 313–335.Google Scholar
  36. Mozurkewich, M., 1986: Comment on ‘Possible role of NO3 in the nighttime chemistry of a cloud’ by William L. Chameides, J. Geophys. Res. 91, 14569–14570.Google Scholar
  37. Mozurkewich, M., McMurry, P. H., Gupta, A., and Calvert, J. G., 1987: Mass accommodation coefficient for HO2 radicals on aqueous particles, J. Geophys. Res. 92, 4163–4170.Google Scholar
  38. Mozurkewich, M. and Calvert, J. G., 1988: Reaction probability of N2O5 on aqueous aerosols, J. Geophys. Res. 93, 15889–15896.Google Scholar
  39. Murphy, D. M. and Fahey, D. W., 1987: Mathematical treatment of the wall loss of a trace species in denuder and catalytic tubes, Anal. Chem. 59, 2753–2759.Google Scholar
  40. Neta, P. and Huie, R. E., 1986: Rate constants for reactions of NO3 radicals in aqueous solutions, J. Phys. Chem. 90, 4644–4648.Google Scholar
  41. Noxon, J. F., Norton, R. B., and Marovich, E., 1980: NO3 in the troposphere, Geophys. Res. Lett. 7, 125–128.Google Scholar
  42. Noxon, J. F., 1983: NO3 and NO2 in the Mid–Pacific troposphere, J. Geophys. Res. 88, 11017–11021.Google Scholar
  43. Philips, D. A. and Dasgupta, P. D., 1987: A diffusion scrubber for the collection of gaseous nitric acid, Sep. Sci. Technol. 22, 1255–1267.Google Scholar
  44. Platt, U., Perner, D., Winer, A. M., Harris, G. W., and Pitts Jr., J. N., 1980: Detection of NO3 in the polluted troposphere by differential optical absorption, Geophys. Res. Lett. 7, 89–92.Google Scholar
  45. Platt, U., Perner, D., Schröder, J., Kessler, C., and Toennissen, A., 1981: The diurnal variation of NO3, J. Geophys. Res. 86, 11965–11970.Google Scholar
  46. Platt, U., Perner, D., and Kessler, C., 1982: The Importance of NO 3 for the Atmospheric NO x Cycle from Experimental Observations, Proc. 2nd Symposium: Composition of the non–urban troposphere, Williamsburg, May 1982, pp. 21–24.Google Scholar
  47. Platt, U. F., Winer, A. M., Biermann, H. W., Atkinson, R., and Pitts Jr., J. N., 1984: Measurement of nitrate radical concentrations in continental air, Environ. Sci. Technol. 18, 365–369.Google Scholar
  48. Platt, U., Perner, D., and Semke, S., 1990a: Observation of nitrate radical concentrations and lifetimes in tropospheric air, in R. D. Bojkov and P. Fabian (eds), Ozone in the Atmosphere, Proc. of the Quadrennial Ozone Symp., Deepack Publ., Hampton, pp. 512–515.Google Scholar
  49. Platt, U., LeBras, G., Poulet, G., Burrows, J. P., and Moortgat, G., 1990b: Peroxy radicals from night–time reaction of NO3 with organic compounds, Nature 348, 147–149.Google Scholar
  50. Prandtl, L., Oswatitsch, K., and Wieghardt, K., 1984: Führer durch die Strömungslehre, 8. Auflage, p. 382, Vieweg, Braunschweig.Google Scholar
  51. Rudich, Y., Talukdar, R. K., Fox, R. W., and Ravishankara, A. R., 1996: Reactive uptake of NO3 on pure water and ionic solutions, J. Geophys. Res. 101, 21023–21031.Google Scholar
  52. Schwartz, S. E. and Freiberg, J. E., 1981: Mass–transport limitation to the rate of reaction of gases in liquis droplets: Application to oxidation of SO3 in aqueous solutions, Atmos. Environ. 15, 1129–1144.Google Scholar
  53. Schwartz, S. E., 1986: Mass–Transport Considerations Pertinent to Aqueous Phase Reactions of Gases in Liquid–Water Clouds, NATO ASI–Series, 6, pp. 415–471.Google Scholar
  54. Schwarz, H. A. and Dodson, R. W., 1984: Equilibrium between hydoxyl radicals and Thallium(II) and the oxidation potential of OH(aq) J. Phys. Chem. 88, 3643–3647.Google Scholar
  55. Schwarz, H. A. and White, W. H., 1981: Solubility equilibria of the nitrogen oxides and oxyacids in dilute aqueous solution, Adv. Environ. Sci. Eng. 4, 1–45.Google Scholar
  56. Steele, W. V. and Appelman, E. H., 1982: The standard enthalpy of formation of peroxymonosulfate (HSO5) and the standart electrode potential of the peroxymonosulfate–bisulfate couple, J. Chem. Thermodynam. 14, 337–344.Google Scholar
  57. Thomas, K., 1992: Zur Wechselwirkung von NO3–Radikalen mit wässrigen Lösungen: Bestimmung des Henry–und Massenakkommodationskoeffizienten, PhD Thesis, University of Wuppertal, Germany.Google Scholar
  58. Thomas, K., Volz–Thomas, A., and Kley, D., 1993: Zur Wechselwirkung von NO3–Radikalen mit wässrigen Lösungen: Bestimmung des Henry–und des Massenakkommodations koeffizienten, Berichte des Forschungszentrum Jülich, JÜL–2755.Google Scholar
  59. Van Doren, J. M., Watson, L. R., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E., 1990: Temperature dependence of the uptake coefficients of HNO3, HCl, and N2O5 by water droplets, J. Phys. Chem. 94, 3265–3269.Google Scholar
  60. Verhees, P., 1986: On the atmospheric chemistry of NO2–O3 systems, PhD Thesis, Wageningen, The Netherlands.Google Scholar
  61. Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney, K. L., and Nuttall, R. L., 1982: The NBS tables of chemical thermodynamic properties – Selected values for inorganic and C1 and C1 organic substances in SI units, J. Phys. Chem. Ref. Data 11,Suppl. 1.Google Scholar
  62. Wilmarth, W. K., Stanbury, M. N., Byrd, J. E., Po, H. N., and Chua, C. P., 1983: Coord. Chem. Rev. 51, 155.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Karin Thomas
    • 1
  • Andreas Volz-Thomas
    • 1
  • Djuro Mihelcic
    • 1
  • Herman G. J. Smit
    • 1
  • Dieter Kley
    • 1
  1. 1.Institut für Chemie und Dynamik der Geosphäre 2Chemie der Belasteten Atmosphäre Forschungszentrum JülichJülichGermany

Personalised recommendations